cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137632 Sums of 2 cubes of distinct odd primes.

This page as a plain text file.
%I A137632 #11 Jul 26 2017 09:29:11
%S A137632 152,370,468,1358,1456,1674,2224,2322,2540,3528,4940,5038,5256,6244,
%T A137632 6886,6984,7110,7202,8190,9056,11772,12194,12292,12510,13498,14364,
%U A137632 17080,19026,24416,24514,24732,25720,26586,29302,29818,29916,30134
%N A137632 Sums of 2 cubes of distinct odd primes.
%e A137632 3^3 + 5^3 = 152 = a(1).
%e A137632 3^3 + 7^3 = 370 = a(2).
%e A137632 5^3 + 7^3 = 468 = a(3).
%p A137632 A137632 := proc(amax) local a,p,q; a := {} ; p := 3 ; while p^3 < amax do q := nextprime(p) ; while p^3+q^3 < amax do a := a union {p^3+q^3} ; q := nextprime(q) ; od: p := nextprime(p) ; od: sort(convert(a,list)) ; end: A137632(80000) ; # _R. J. Mathar_, May 04 2008
%t A137632 f[upto_]:=Module[{max=Ceiling[Power[upto-27, (3)^-1]],prs}, prs=Prime[Range[2,max]]; Select[Union[Total/@(Subsets[prs,{2}]^3)], #<=upto&]]; f[31000] (* _Harvey P. Dale_, Apr 20 2011 *)
%Y A137632 A subset of A120398 and A086119. Cf. A138853, A138854.
%K A137632 nonn
%O A137632 1,1
%A A137632 _M. F. Hasler_, Apr 13 2008
%E A137632 More terms from _R. J. Mathar_, Apr 13 2008, May 04 2008