This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137650 #14 Dec 07 2019 08:14:46 %S A137650 1,2,1,5,4,1,15,14,7,1,52,51,36,11,1,203,202,171,81,16,1,877,876,813, %T A137650 512,162,22,1,4140,4139,4012,3046,1345,295,29,1,21147,21146,20891, %U A137650 17866,10096,3145,499,37,1,115975,115974,115463 %N A137650 Triangle read by rows, A008277 * A000012. %C A137650 Left column = Bell numbers (A000110) starting (1, 2, 5, 15, 52, 203, ...). Row sums = A005493(n+1): (1, 3, 10, 37, 151, 674, ...). %C A137650 Corresponding to the generalized Stirling number triangle of first kind A049444. - _Peter Luschny_, Sep 18 2011 %F A137650 A008277 * A000012 as infinite lower triangular matrices. Partial sums of A008277 rows starting from the right. %e A137650 First few rows of the triangle are %e A137650 1; %e A137650 2, 1; %e A137650 5, 4, 1; %e A137650 15, 14, 7, 1; %e A137650 52, 51, 36, 11, 1; %e A137650 203, 202, 171, 81, 16, 1; %e A137650 877, 876, 813, 512, 162, 22, 1; %e A137650 ... %p A137650 A137650_row := proc(n) local k,i; %p A137650 add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1),k=0..n-1); %p A137650 seq(coeff(%,x,k),k=0..n-1) end: %p A137650 seq(print(A137650_row(n)),n=1..7); # _Peter Luschny_, Sep 18 2011 %t A137650 row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest; %t A137650 Array[row, 10] // Flatten (* _Jean-François Alcover_, Dec 07 2019 *) %Y A137650 Cf. A000110, A008277, A005493, A049444. %Y A137650 A similar triangle is A133611. %K A137650 nonn,tabl %O A137650 1,2 %A A137650 _Gary W. Adamson_, Feb 01 2008