A137680 Triangle read by rows, T(n,k) = T(n-1, k-1) - T(n-k, k-1); with leftmost term in each row = sum of all previous terms.
1, 1, 1, 3, 0, 1, 7, 2, 0, 1, 17, 4, 1, 0, 1, 40, 10, 4, 1, 0, 1, 96, 23, 8, 3, 1, 0, 1, 228, 56, 19, 8, 3, 1, 0, 1, 544, 132, 46, 18, 7, 3, 1, 0, 1, 1296, 316, 109, 42, 18, 7, 3, 1, 0, 1, 3089, 752, 260, 101, 41, 17, 7, 3, 1, 0, 1, 7361, 1793, 620, 241, 98, 41, 17, 7, 3, 1, 0, 1, 17544, 4272, 1477, 574, 233, 97, 40, 17, 7, 3, 1, 0, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 3, 0, 1; 7, 2, 0, 1; 17, 4, 1, 0, 1; 40, 10, 4, 1, 0, 1; 96, 23, 8, 3, 1, 0, 1; 228, 56, 19, 8, 3, 1, 0, 1; 544, 132, 46, 18, 7, 3, 1, 0, 1; 1296, 316, 109, 42, 18, 7, 3, 1, 0, 1; 3089, 752, 260, 101, 41, 17, 7, 3, 1, 0, 1; ...
Crossrefs
Cf. A160096. - Gary W. Adamson, May 01 2009
Programs
-
Maple
A137680 := proc(n,k) if k < 1 or k > n then 0 ; elif n = 1 then 1; elif k = 1 then add(add(procname(r,j),j=1..r),r=1..n-1) ; else procname(n-1,k-1)-procname(n-k,k-1) ; end if; end proc: # R. J. Mathar, Aug 12 2012
-
Mathematica
T[n_, k_] := T[n, k] = Which[k < 1 || k > n, 0, n == 1, 1, k == 1, Sum[T[r, j], {r, 1, n-1}, {j, 1, r}], True, T[n-1, k-1] - T[n-k, k-1]]; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 02 2024, after R. J. Mathar *)
Comments