cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137707 Secondary Wythoff Array read by descending antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 9, 6, 13, 8, 15, 10, 21, 14, 11, 25, 16, 35, 22, 19, 12, 41, 26, 57, 36, 31, 20, 17, 67, 42, 93, 58, 51, 32, 29, 18, 109, 68, 151, 94, 83, 52, 47, 30, 23, 177, 110, 245, 152, 135, 84, 77, 48, 39, 24, 286, 178, 397, 246, 220, 136, 125, 78, 63, 40, 27
Offset: 1

Views

Author

Clark Kimberling, Feb 07 2008

Keywords

Comments

(1) Delete the odd numbered rows and get twice the Wythoff array, A035513.
(2) Subtract 1 from the even numbered rows and get the odd numbered rows.
(3) As a sequence, this is a permutation of the positive integers.
(4) The array is a dispersion and an interspersion.
(5) Let c = ordered union of odd numbered columns and let d = ordered union of even numbered columns; then c and d are the unique solutions of the complementary equation d(n)=c(c(n))+2 and also of the complementary equation d(n)=c(n)+2*Floor[(n+2)/2].
(6) c=A137708, d=A137709.

Examples

			Corner:
    1    3    5     9    15    25    41    67    109   177
    2    4    6    10    16    26    42    68    110   178
    7   13   21    35    57    93   151   245    397   643
    8   14   22    36    58    94   152   246    398   644
   11   19   31    51    83   135   219   355    575   931
   12   20   32    52    84   136   220   356    576   932
   17   29   47    77   125   203   329   533    863  1397
   18   30   48    78   126   204   330   534    864  1398
   23   39   63   103   167   271   439   711   1151  1863
   24   40   64   104   168   272   440   712   1152  1864
   27   45   73   119   193   313   507   821   1329  2151
   28   46   74   120   194   314   508   822   1330  2152
   33   55   89   145   235   381   617   999   1617  2617
		

Crossrefs

Programs

  • Mathematica
    w[n_, k_] := Fibonacci[k + 1]  Floor[n*GoldenRatio] + (n - 1)  Fibonacci[k];
    t = Table[2 w[n, k], {n, 1, 12}, {k, 1, 12}]; Grid[Riffle[t - 1, t]]
     (* Clark Kimberling, May 09 2025 *)

Formula

Odd numbered rows: r(n)=r(n-1)+r(n-2)+1, Even numbered rows: r(n)=r(n-1)+r(n-2).