This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137712 #15 Apr 02 2022 10:11:56 %S A137712 1,1,1,2,0,1,3,1,0,1,5,1,0,0,1,8,2,1,0,0,1,13,3,1,0,0,0,1,21,5,2,1,0, %T A137712 0,0,1,34,8,3,2,0,0,0,0,1,55,13,5,2,2,0,0,0,0,1,89,21,8,4,2,1,0,0,0,0, %U A137712 1,144,34,13,6,4,2,1,0,0,0,0,1,233,55,21,10,5,4,1,1,0,0,0,0,1 %N A137712 Triangle read by rows: T(n,k) = T(n-1, k-1) - T(n-k, k-1); with left border = the Fibonacci sequence. %C A137712 Row sums = A137713: (1, 2, 3, 5, 7, 12, 18, 30, 48, 78, 126, ...). %C A137712 A137710 is the analogous triangle with left border = (1, 2, 4, 8, 16, 32, ...). %H A137712 Robert Israel, <a href="/A137712/b137712.txt">Table of n, a(n) for n = 1..10011</a>(rows 1 to 141, flattened) %F A137712 T(n,k) = T(n-1, k-1) - T(n-k, k-1), given left border = (1, 1, 2, 3, 5, 8, 13, ...). %F A137712 Here T(n,k) = T(n-1,k-1) if n-k < k-1. - _Robert Israel_, Aug 20 2018 %e A137712 First few rows of the triangle: %e A137712 1; %e A137712 1, 1; %e A137712 2, 0, 1; %e A137712 3, 1, 0, 1; %e A137712 5, 1, 0, 0, 1; %e A137712 8, 2, 1, 0, 0, 1; %e A137712 13, 3, 1, 0, 0, 0, 1; %e A137712 21, 5, 2, 1, 0, 0, 0, 1; %e A137712 34, 8, 3, 2, 0, 0, 0, 0, 1; %e A137712 55, 13, 5, 2, 2, 0, 0, 0, 0, 1; %e A137712 89, 21, 8, 4, 2, 1, 0, 0, 0, 0, 1; %e A137712 144, 34, 13, 6, 4, 2, 1, 0, 0, 0, 0, 1; %e A137712 233, 55, 21, 10, 5, 4, 1, 1, 0, 0, 0, 0, 1; %e A137712 377, 89, 34, 16, 8, 5, 4, 1, 1, 0, 0, 0, 0, 1; %e A137712 ... %p A137712 for n from 1 to 20 do %p A137712 T[n,1]:= combinat:-fibonacci(n); %p A137712 for k from 2 to n do %p A137712 if n >= 2*k-1 then T[n,k]:= T[n-1,k-1] - T[n-k,k-1] %p A137712 else T[n,k]:= T[n-1,k-1] %p A137712 fi %p A137712 od: %p A137712 od: %p A137712 seq(seq(T[n,k],k=1..n),n=1..20); # _Robert Israel_, Aug 20 2018 %Y A137712 Cf. A137713, A137710. %K A137712 nonn,tabl %O A137712 1,4 %A A137712 _Gary W. Adamson_, Feb 08 2008 %E A137712 Corrected by _Robert Israel_, Aug 20 2018