cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137777 Triangular sequence of coefficients from the expansion of the derivative of the Bernoulli polynomial function: p(x,t) = t*exp(x*t)/(exp(t)-1); q(x,t) = p'(x,t) = dp(x,t)/dt.

This page as a plain text file.
%I A137777 #16 Mar 17 2018 05:39:33
%S A137777 2,-2,4,2,-12,12,0,24,-72,48,-8,0,240,-480,240,0,-240,0,2400,-3600,
%T A137777 1440,240,0,-5040,0,25200,-30240,10080,0,13440,0,-94080,0,282240,
%U A137777 -282240,80640,-24192,0,483840,0,-1693440,0,3386880,-2903040,725760,0,-2177280,0,14515200,0,-30481920,0,43545600,-32659200
%N A137777 Triangular sequence of coefficients from the expansion of the derivative of the Bernoulli polynomial function: p(x,t) = t*exp(x*t)/(exp(t)-1); q(x,t) = p'(x,t) = dp(x,t)/dt.
%C A137777 Row sums are {2, 2, 0, -8, 0, 240, 0, -24192, 0, 6048000, 0, ...}.
%C A137777 From _Peter Luschny_, Apr 23 2009: (Start)
%C A137777 The sequence can also be computed as the coefficients of the Bernoulli polynomials B_n(x) times 2(n+1)! for n >= 1. As Peter Pein observed the Mathematica code then reduces to
%C A137777 Table[CoefficientList[2 (n+1)! BernoulliB[n,x],x],{n,1,10}] // Flatten
%C A137777 Note that this formula is also well defined in the case n = 0 and has the value 2. (End)
%F A137777 p(x,t) = t*exp(x*t)/(exp(t)-1); q(x,t) = p'(x,t) = dp(x,t)/dt = Sum_{n>=0} Q(x,n)*t^n/n!; out_n,m=2*(n + 2)!*n!*Coefficients(Q(x,n).
%F A137777 A137777(n,0) = 2*A129814(n) for n >= 0.
%F A137777 A137777(n,n) = 2*(n+1)! for n >= 0.
%F A137777 Conjecture on row sums: Sum_{k=0..n+1} T(n,k) = 2*A129825(n+2). - _R. J. Mathar_, Jun 03 2009
%e A137777 {2},
%e A137777 {-2, 4},
%e A137777 {2, -12, 12},
%e A137777 {0,24, -72, 48},
%e A137777 {-8, 0, 240, -480, 240},
%e A137777 {0, -240, 0, 2400, -3600, 1440},
%e A137777 {240, 0, -5040, 0, 25200, -30240, 10080},
%e A137777 {0, 13440, 0, -94080, 0, 282240, -282240, 80640},
%e A137777 {-24192, 0, 483840, 0, -1693440, 0, 3386880, -2903040, 725760},
%e A137777 {0, -2177280, 0, 14515200, 0, -30481920, 0, 43545600, -32659200, 7257600},
%e A137777 {6048000, 0, -119750400, 0, 399168000, 0, -558835200, 0, 598752000, -399168000, 79833600},
%e A137777 {0, 798336000, 0, -5269017600, 0, 10538035200, 0, -10538035200, 0, 8781696000, -5269017600, 958003200}
%p A137777 seq(seq(coeff(bernoulli(k,x)*2*(k+1)!,x,i),i=0..k),k=1..10); # _Peter Luschny_, Apr 23 2009
%t A137777 Clear[p, b, a]; p[t_] = D[t^2*Exp[x*t]/(Exp[t]-1),{t,1}];
%t A137777 a = Table[CoefficientList[2*n!^2*SeriesCoefficient
%t A137777 [Series[p[t],{t,0,30}],n],x],{n,0,10}]; Flatten[a]
%t A137777 Table[CoefficientList[2 BernoulliB[k,x] Gamma[2+k],x],{k,0,10}]//Flatten
%K A137777 tabl,sign
%O A137777 0,1
%A A137777 _Roger L. Bagula_ and _Gary W. Adamson__, Apr 28 2008
%E A137777 Edited by _N. J. A. Sloane_, Jan 03 2010, incorporating comments from _Peter Luschny_ and Peter Pein