cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137794 Characteristic function of numbers having no prime gaps in their factorization.

This page as a plain text file.
%I A137794 #13 Dec 09 2021 11:54:33
%S A137794 1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,0,0,1,1,1,0,1,0,1,1,1,1,0,0,
%T A137794 1,1,1,0,0,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,1,0,
%U A137794 0,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,1
%N A137794 Characteristic function of numbers having no prime gaps in their factorization.
%H A137794 Antti Karttunen, <a href="/A137794/b137794.txt">Table of n, a(n) for n = 1..65537</a>
%H A137794 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F A137794 a(n) = 0^A073490(n).
%F A137794 a(A073491(n)) = 1; a(A073492(n)) = 0;
%F A137794 a(n) = A137721(n) - A137721(n-1) for n>1.
%t A137794 a[n_] := With[{pp = PrimePi @ FactorInteger[n][[All, 1]]},
%t A137794      Boole[pp[[-1]] - pp[[1]] + 1 == Length[pp]]];
%t A137794 Array[a, 105] (* _Jean-François Alcover_, Dec 09 2021 *)
%o A137794 (PARI) A137794(n) = if(1>=omega(n),1,my(pis=apply(primepi,factor(n)[,1])); for(k=2,#pis,if(pis[k]>(1+pis[k-1]),return(0))); (1)); \\ _Antti Karttunen_, Sep 27 2018
%Y A137794 Cf. A137721 (partial sums).
%K A137794 nonn
%O A137794 1,1
%A A137794 _Reinhard Zumkeller_, Feb 11 2008