This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137798 #12 Feb 26 2024 19:16:33 %S A137798 0,0,4,8,16,14,16,18,24,30,30,30,34,38,46,44,46,48,54,60,60,60,64,68, %T A137798 76,74,76,78,84,90,90,90,94,98,106,104,106,108,114,120,120,120,124, %U A137798 128,136,134,136,138,144,150,150,150,154,158,166,164,166,168,174,180,180,180 %N A137798 Partial sums of A137797. %H A137798 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,0,-1). %F A137798 f(n) = Sum{k=0,n} 2*((k+1) mod 5) - 2*((k+1) mod 2). %F A137798 a(n) = a(n-2)+a(n-5)-a(n-7) for n>6. - _Colin Barker_, Dec 16 2014 %F A137798 G.f.: 2*x^2*(3*x^3+6*x^2+4*x+2) / ((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)). - _Colin Barker_, Dec 16 2014 %t A137798 Accumulate[LinearRecurrence[{-1,0,0,0,1,1},{0,0,4,4,8,-2,2},100]] (* or *) LinearRecurrence[{0,1,0,0,1,0,-1},{0,0,4,8,16,14,16},100] (* _Harvey P. Dale_, Jun 08 2015 *) %o A137798 (Python) %o A137798 sequence = [] %o A137798 l = list(range(20)) %o A137798 while len(l) > 0: %o A137798 a = l.pop(0) %o A137798 z = sum(2*((x+1)%5)-2*((x+1)%2) for x in range(a)) %o A137798 sequence.append(z) %o A137798 print(sequence) %o A137798 (PARI) concat([0,0], Vec(2*x^2*(3*x^3+6*x^2+4*x+2)/((x-1)^2*(x+1)*(x^4+x^3+x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Dec 16 2014 %Y A137798 Cf. A137797. %K A137798 easy,nonn %O A137798 0,3 %A A137798 _William A. Tedeschi_, Feb 10 2008