A335226 Numbers m such that twice the number of unordered Goldbach partitions of 2m is less than the number of unordered Goldbach partitions of 4m.
6, 16, 19, 28, 34, 49, 61, 64, 76, 91, 94, 124, 133, 154, 163, 166, 184, 208, 214, 244, 250, 259, 271, 277, 286, 301, 316, 334, 346, 355, 364, 403, 430, 439, 451, 481, 496, 511, 556, 619, 649, 679, 706, 709, 724, 799, 802, 859, 874, 979, 982, 994, 1006, 1024, 1069, 1099
Offset: 1
Keywords
Examples
m=6 is a term because 2m=12 has the partition (5,7) while 4m=24 has the partitions (5,19),(7,17) and (11,13).
Programs
-
PARI
for(n=1, 100000, x=0; y=0; forprime(i=2, 2*n-1, if(i<=n && isprime(2*n-i), x=x+1;); if(isprime(4*n-i), y=y+1;);); if(2*x
Comments