A137851 a(n) = A054525(n) * A061397(n).
0, 2, 3, -2, 5, -5, 7, 0, -3, -7, 11, 2, 13, -9, -8, 0, 17, 3, 19, 2, -10, -13, 23, 0, -5, -15, 0, 2, 29, 10, 31, 0, -14, -19, -12, 0, 37, -21, -16, 0, 41, 12, 43, 2, 3, -25, 47, 0, -7, 5, -20, 2, 53, 0, -16, 0, -22, -31, 59, -2, 61, -33, 3, 0, -18, 16, 67, 2, -26, 14, 71, 0, 73, -39, 5, 2, -18, 18, 79, 0, 0, -43, 83, -2, -22, -45, -32, 0
Offset: 1
Examples
a(4) = -2 = (0, -1, 0, 1) dot (0, 2, 3, 0), where (0, -1, 0, 1) = row 4 of the Möbius triangle A054525 and (0, 2, 3, 0) = the first 4 terms of A061397.
Programs
-
Maple
A061397 := proc(n) if isprime(n) then n; else 0 ; fi ; end: A054525 := proc(n,k) if n mod k = 0 then numtheory[mobius](n/k); else 0; fi ; end: A137851 := proc(n) local k ; add(A061397(k)* A054525(n,k),k=1..n) ; end: seq(A137851(n),n=1..120) ; # R. J. Mathar, May 23 2008
-
Mathematica
a[n_] := If[n == 1, 0, With[{p = FactorInteger[n][[All, 1]]}, p*MoebiusMu[n/p] // Total]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 13 2023 *)
-
Sage
def A137851(n): return add(d*moebius(n//d) for d in divisors(n) if is_prime(d)) [A137851(n) for n in (1..88)] # Peter Luschny, Feb 01 2012
Formula
Dirichlet g.f.: primezeta(s-1)/zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n} p*mu(n/p), where p is prime. - Ridouane Oudra, Nov 12 2019
Extensions
More terms from R. J. Mathar, May 23 2008
Comments