cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137867 Triangular sequence of coefficients of the Misiurewicz polynomial which are made from the Pc Mandelbrot -Julia polynomials A137560 as: Pc(x,n)-Pc(x,m); n<>m.

This page as a plain text file.
%I A137867 #9 Nov 24 2017 06:20:04
%S A137867 -1,1,0,0,1,-1,1,1,0,0,0,2,1,0,0,1,2,1,-1,1,1,2,1,0,0,0,0,4,6,6,4,1,0,
%T A137867 0,0,2,5,6,6,4,1,0,0,1,2,5,6,6,4,1,-1,1,1,2,5,6,6,4,1,0,0,0,0,0,8,20,
%U A137867 40,68,94,114,116,94,60,28,8,1,0,0,0,0,4,14,26,44,69,94,114,116,94,60,28,8,1,0,0,0,2,5,14,26,44,69,94,114,116,94,60,28,8
%N A137867 Triangular sequence of coefficients of the Misiurewicz polynomial which are made from the Pc Mandelbrot -Julia polynomials A137560 as: Pc(x,n)-Pc(x,m); n<>m.
%C A137867 Row sums are: {0, 1, 1, 3, 4, 4, 21, 24, 25, 25, 651, 672, 675, 676, 676, 457653, 458304, 458325, 458328, 458329, 458329};
%C A137867 The roots of these polynomials are called Misiurewicz points and they are found in the antenna areas of the Mandelbrot set M.
%D A137867 Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, p. 133ff.
%F A137867 Pc(x,n)-> Nested ( z^2+x: when z->x): A137560; Pc(x,n)-Pc(x,m); n<>m;
%e A137867 {-1, 1},
%e A137867 {0, 0, 1},
%e A137867 {-1, 1, 1},
%e A137867 {0, 0, 0, 2, 1},
%e A137867 {0, 0, 1, 2, 1},
%e A137867 {-1, 1, 1, 2, 1},
%e A137867 {0, 0, 0, 0, 4, 6, 6, 4, 1},
%e A137867 {0, 0, 0, 2, 5, 6, 6, 4, 1},
%e A137867 {0, 0, 1, 2, 5, 6, 6, 4, 1},
%e A137867 {-1, 1, 1, 2, 5, 6, 6, 4, 1},
%e A137867 {0, 0, 0, 0, 0, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137867 {0, 0, 0, 0, 4, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137867 {0, 0, 0, 2,5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137867 {0, 0, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137867 {-1, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},
%e A137867 {0, 0, 0, 0, 0, 0, 16, 56, 152, 376, 844, 1744, 3340, 5976, 10040, 15856, 23460, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%e A137867 {0, 0, 0, 0, 0, 8, 36, 96, 220, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%e A137867 {0, 0, 0, 0, 4, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%e A137867 {0, 0, 0, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%e A137867 {0, 0, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},
%e A137867 {-1, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1}
%t A137867 Clear[f, g, h, x]; f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 5]]]; h = Union[Flatten[Table[Flatten[Table[If[n == m, {}, ExpandAll[g[[ n]] - g[[m]]]], {m, 1, n}]], {n, 1, Length[g]}]]]; a = Table[CoefficientList[h[[n]], x], {n, 1, Length[h]}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[[n]], x]], {n, 1, Length[h]}];
%K A137867 tabl,uned,sign
%O A137867 1,12
%A A137867 _Roger L. Bagula_, Apr 29 2008