This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137914 #55 Jun 09 2025 10:39:03 %S A137914 1,2,3,0,9,5,9,4,1,7,3,4,0,7,7,4,6,8,2,1,3,4,9,2,9,1,7,8,2,4,7,9,8,7, %T A137914 3,7,5,7,1,0,3,4,0,0,0,9,3,5,5,0,9,4,8,3,9,0,5,5,5,4,8,3,3,3,6,6,3,9, %U A137914 9,2,3,1,4,4,7,8,2,5,6,0,8,7,8,5,3,2,5,1,6,2,0,1,7,0,8,6,0,9,2,1,1,3,8,9,4 %N A137914 Decimal expansion of arccos(1/3). %C A137914 Dihedral angle in radians of regular tetrahedron. %C A137914 Arccos(1/3) is the central angle of a cube, made by the center and two neighboring vertices. - _Clark Kimberling_, Feb 10 2009 %C A137914 Also the complementary tetrahedral angle, Pi-A156546, and therefore related to the magic angle (Pi-2*A195696). - _Stanislav Sykora_, Jan 23 2014 %C A137914 Polar angle (or apex angle) of the cone that subtends exactly one third of the full solid angle. - _Stanislav Sykora_, Feb 20 2014 %C A137914 Also the acute angle in the rhombi and isosceles trapezoids in the trapezo-rhombic dodecahedron. - _Eric W. Weisstein_, Jan 09 2019 %C A137914 Also the angle between the tangent lines to the curves y = sin(x) at y = cos(x) at the points of intersection. - _David Radcliffe_, Jan 17 2023 %H A137914 G. C. Greubel, <a href="/A137914/b137914.txt">Table of n, a(n) for n = 1..10000</a> %H A137914 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 58. %H A137914 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Tetrahedron.html">Tetrahedron</a>. %H A137914 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DihedralAngle.html">Dihedral Angle</a>. %H A137914 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Trapezo-RhombicDodecahedron.html">Trapezo-Rhombic Dodecahedron</a>. %H A137914 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A137914 arccos(1/3) = arctan(2*sqrt(2)) = 2*arcsin(sqrt(3)/3) = arcsin(2*sqrt(2)/3). %F A137914 Equals sqrt(2)*Sum_{k>=0} (-1)^k/(2^k*(2*k+1)). - _Davide Rotondo_, Jun 07 2025 %F A137914 Equals 2*A195695. - _Hugo Pfoertner_, Jun 07 2025 %e A137914 1.2309594173407746821349291782479873757103400093550948390555483336639923144... %t A137914 RealDigits[ArcCos[1/3], 10, 120][[1]] (* _Harvey P. Dale_, Jul 06 2018 *) %t A137914 RealDigits[ArcSec[3], 10, 120][[1]] (* _Eric W. Weisstein_, Jan 09 2019 *) %o A137914 (PARI) acos(1/3) %o A137914 (Magma) SetDefaultRealField(RealField(100)); Arccos(1/3); // _G. C. Greubel_, Aug 20 2018 %Y A137914 Cf. A137915 (same in degrees), A019670, A195695, A195696, A238238, Platonic solids dihedral angles: A156546 (octahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron). %K A137914 cons,nonn %O A137914 1,2 %A A137914 _Rick L. Shepherd_, Feb 22 2008