This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137965 #10 Mar 03 2018 13:52:48 %S A137965 1,1,5,30,220,1725,14356,124020,1102770,10023680,92722620,870039474, %T A137965 8261024380,79225392830,766302511445,7466883915800,73227699088806, %U A137965 722228333119200,7159117292177840,71284856957207030,712673042497177450 %N A137965 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^5. %H A137965 Vaclav Kotesovec, <a href="/A137965/b137965.txt">Table of n, a(n) for n = 0..350</a> %F A137965 G.f.: A(x) = 1 + x*B(x)^5 where B(x) is the g.f. of A137964. %F A137965 a(n) = Sum_{k=0..n-1} C(5*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - _Paul D. Hanna_, Jun 16 2009 %F A137965 a(n) ~ sqrt(5*s*(1-s)*(4-5*s) / ((152*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.0927175295193852172913829423030505161354091369581... and s = 1.306924048536121339538817141295744998528778296640... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^5, 20 * r^2 * s^3 * (1 + r*s^4)^4 = 1. - _Vaclav Kotesovec_, Nov 22 2017 %o A137965 (PARI) {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^5);polcoeff(A,n)} %o A137965 (PARI) a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ _Paul D. Hanna_, Jun 16 2009 %Y A137965 Cf. A137964, A137966; A137961, A137963, A137973. %K A137965 nonn %O A137965 0,3 %A A137965 _Paul D. Hanna_, Feb 26 2008