This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137971 #10 Mar 03 2018 12:28:26 %S A137971 1,1,4,30,232,2037,18720,179454,1770380,17864490,183510672,1912621814, %T A137971 20175123732,214980182783,2310645275932,25021270486830, %U A137971 272717638241172,2989549949264304,32938634975109864,364566094737276708 %N A137971 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4. %H A137971 Vaclav Kotesovec, <a href="/A137971/b137971.txt">Table of n, a(n) for n = 0..350</a> %F A137971 G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137972. %F A137971 a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - _Paul D. Hanna_, Jun 16 2009 %F A137971 a(n) ~ sqrt(4*s*(1-s)*(6-7*s) / ((276*s - 240)*Pi)) / (n^(3/2) * r^n), where r = 0.0833821738312503523008482260558417829257343369560... and s = 1.229254439060935443156800948762443928645579909446... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^4, 24 * r^2 * s^5 * (1 + r*s^6)^3 = 1. - _Vaclav Kotesovec_, Nov 22 2017 %o A137971 (PARI) {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)} %o A137971 (PARI) a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ _Paul D. Hanna_, Jun 16 2009 %Y A137971 Cf. A137972, A137970; A137956, A137958, A137964. %K A137971 nonn %O A137971 0,3 %A A137971 _Paul D. Hanna_, Feb 26 2008