cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137991 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of Fibonacci numbers (A000045) as coefficients.

This page as a plain text file.
%I A137991 #16 Feb 16 2025 08:33:07
%S A137991 3,6,9,7,5,3,7,1,7,1,4,8,0,8,9,0,9,6,5,4,5,2,9,4,7,8,8,9,3,2,9,1,2,0,
%T A137991 8,6,2,0,4,7,6,0,7,3,5,8,0,7,6,3,4,9,4,9,9,5,7,3,5,9,7,2,8,4,6,8,6,5,
%U A137991 2,8,4,0,3,4,5,3,1,9,2,8,6,0,7,7,2,3,9,7,5,1,0,0,3,0,0,7,2,6,8
%N A137991 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of Fibonacci numbers (A000045) as coefficients.
%H A137991 G. C. Greubel, <a href="/A137991/b137991.txt">Table of n, a(n) for n = 0..2500</a>
%H A137991 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>.
%H A137991 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EngelExpansion.html">Engel Expansion</a>.
%p A137991 with (combinat,fibonacci); P:=proc(n) local a,i,k; a:=0; k:=1; for i from 1 by 1 to n do k:=k*fibonacci(i); a:=a+1/k; print(evalf(1/a,100)); od; end: P(100);
%t A137991 RealDigits[N[1/(Sum[Product[1/Fibonacci[k], {k, 1, n}], {n, 1, 1000}]),
%t A137991 100]][[1]] (* _G. C. Greubel_, Dec 26 2016 *)
%Y A137991 Cf. A000045, A101689 (reciprocal), A137987.
%K A137991 easy,nonn,cons
%O A137991 0,1
%A A137991 _Paolo P. Lava_ and _Giorgio Balzarotti_, Feb 26 2008