cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A137993 A014138 (= partial sums of Catalan numbers starting with 1,2,5) mod 3.

Original entry on oeis.org

1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

M. F. Hasler, Mar 16 2008

Keywords

Comments

As usual, "mod 3" means to choose the unique representative in { 0,1,2 } of the equivalence class modulo 3Z.
Here the conventions of A014138 are used, but it seems somehow unnatural to start with offset 0 corresponding to the Catalan number A000108(1).
For m>1, the length of the m-th block of nonzero elements (and thus the approximate length of the m-th string of consecutive 1's) is given by 2 A137822(m)-1.

Crossrefs

Cf. A014138, A000108, A137821-A137824, A107755, A137992, A014137(n+1) = a(n)+1 (mod 3).

Programs

  • PARI
    A137993(n) = lift( sum( k=1,n+1, binomial( 2*k,k )/(k+1), Mod(0,3) ))

Formula

a(n) = sum( k=1..n+1, C(k) ) (mod 3), where C(k) = binomial(2k,k)/(k+1) = A000108(k).
a(n) = 0 <=> n+1 = 2 A137821(m) for some m.
Showing 1-1 of 1 results.