A137998 Least k such that floor(16^n / 10^k) = 1, 2, 4 or 8 (mod 10), or zero if no such k exists.
1, 2, 3, 0, 3, 1, 2, 2, 5, 4, 1, 4, 2, 4, 4, 1, 2, 4, 2, 2, 1, 3, 2, 7, 5, 1, 2, 4, 3, 3, 1, 2, 2, 3, 4, 1, 4, 2, 4, 3, 1, 2, 4, 2, 2, 1, 5, 2, 5, 3, 1, 2, 5, 7, 4, 1, 2, 2, 3, 4, 1, 3, 2, 7, 3, 1, 2, 4, 2, 2, 1, 12, 2, 3, 7, 1, 2, 3, 5, 7, 1, 2, 2, 3, 4, 1, 3, 2, 5, 3, 1, 2, 3, 2, 2, 1, 6, 2, 3, 5, 1, 2, 3, 4, 3
Offset: 1
Examples
a(1)=1 since 16^1 has a 1 in position 1 (10^1). a(2)=2 since 16^2=256 has a 2 in position 2 (10^2). a(3)=3 since 16^3=4096 has a 4 in position 3 (10^3). a(4)=0 since 16^4=65536 has no digit 1,2,4 or 8. If we arrange the terms in a 25-column matrix, we can see the pattern: [1 2 3 0 3 1 2 2 5 4 1 4 2 4 4 1 2 4 2 2 1 3 2 7 5] [1 2 4 3 3 1 2 2 3 4 1 4 2 4 3 1 2 4 2 2 1 5 2 5 3] [1 2 5 7 4 1 2 2 3 4 1 3 2 7 3 1 2 4 2 2 1 12 2 3 7] [1 2 3 5 7 1 2 2 3 4 1 3 2 5 3 1 2 3 2 2 1 6 2 3 5] [1 2 3 4 3 1 2 2 5 3 1 3 2 3 8 1 2 5 2 2 1 4 2 3 4] [1 2 3 4 3 1 2 2 6 5 1 6 2 5 4 1 2 5 2 2 1 3 2 5 4] [1 2 7 3 3 1 2 2 3 7 1 8 2 7 3 1 2 5 2 2 1 7 2 4 3] [1 2 4 5 4 1 2 2 3 7 1 3 2 4 3 1 2 4 2 2 1 4 2 3 5] [1 2 3 4 4 1 2 2 3 7 1 3 2 6 3 1 2 3 2 2 1 4 2 3 8] [1 2 3 5 3 1 2 2 4 3 1 3 2 3 4 1 2 6 2 2 1 5 2 3 6] [1 2 3 4 3 1 2 2 9 4 1 5 2 4 5 1 2 8 2 2 1 3 2 4 5] etc.
Links
- J. Shallit, Minimal primes, J. Recreational Mathematics 30 (2) (1999-2000), 113-117.
Crossrefs
Cf. A071071.
Comments