This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138009 #19 Jun 26 2025 07:58:42 %S A138009 1,1,2,1,4,1,6,2,4,3,10,1,12,5,6,2,16,2,18,3,10,11,22,1,15,13,14,5,28, %T A138009 2,30,7,18,19,20,1,36,22,23,4,40,5,42,11,12,28,46,1,33,14,31,15,52,7, %U A138009 34,8,36,37,58,1,60,39,19,10,42,10,66,22,45,11,70,2,72,48,25,26,51,13,78,4 %N A138009 a(n) = number of positive integers k, k <= n, where d(k) >= d(n); d(n) = number of positive divisors of n. %H A138009 Robert Israel, <a href="/A138009/b138009.txt">Table of n, a(n) for n = 1..10000</a> %F A138009 From _Amiram Eldar_, Jun 26 2025: (Start) %F A138009 a(n) = n - 1 if and only if n is prime. %F A138009 a(n) = 1 if and only if n is a highly composite number (A002182). (End) %e A138009 9 has 3 positive divisors. Among the first 9 positive integers, there are four that have more than or equal the number of divisors than 9 has: 4, with 3 divisors; 6, with 4 divisors; 8, with 4 divisors; and 9, with 3 divisors. So a(9) = 4. %p A138009 L:= [2]: A[1]:= 1: %p A138009 for n from 2 to 100 do %p A138009 v:= 2*numtheory:-tau(n); %p A138009 k:= ListTools:-BinaryPlace(L,v-1); %p A138009 A[n]:= n-k; %p A138009 L:= [op(L[1..k]),v,op(L[k+1..-1])]; %p A138009 od: %p A138009 seq(A[i],i=1..100); # _Robert Israel_, Sep 26 2018 %t A138009 Table[Length[Select[Range[n], Length[Divisors[ # ]]>=Length[Divisors[n]]&]], {n,1,100}] (* _Stefan Steinerberger_, Feb 29 2008 *) %o A138009 (PARI) a(n) = my(dn=numdiv(n)); sum(k=1, n, numdiv(k) >= dn); \\ _Michel Marcus_, Sep 26 2018 %Y A138009 Cf. A000005, A002182, A067004, A079788. %K A138009 nonn,look %O A138009 1,3 %A A138009 _Leroy Quet_, Feb 27 2008 %E A138009 More terms from _Stefan Steinerberger_, Feb 29 2008