This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138125 #12 Feb 23 2023 11:41:12 %S A138125 2,4,6,4,6,6,4,4,6,6,4,4,6,4,4,4,6,6,6,4,6,6,6,6,6,6,6,4,4,6,4,4,6,4, %T A138125 6,6,6,6,6,4,4,4,6,6,4,6,6 %N A138125 Final digit of n-th even superperfect number A061652(n). %C A138125 Also, final digit of n-th superperfect number A019279(n), if there are no odd superperfect numbers. %H A138125 Landon Curt Noll, <a href="http://www.isthe.com/chongo/tech/math/prime/mersenne.html">Mersenne Prime Digits</a>. %F A138125 a(1)=2. For n>1, if final digit of n-th Mersenne prime A000668(n) is equal to 1 then a(n)=6, otherwise a(n)=4. %e A138125 a(5)=6 because the 5th even superperfect number A061652(5) is 4096 and the final digit of 4096 is 6. %e A138125 a(34)=4 because the final digit of 34th Mersenne prime is 7. a(39)=6 because the final digit of 39th Mersenne prime is 1. %e A138125 ............................................................. %e A138125 ............... SHORT TABLE OF FINAL DIGITS ................. %e A138125 ............................................................. %e A138125 Final digit of ..... Final digit of Even ..... Final digit of %e A138125 Mersenne prime ..... Superperfect number ..... Perfect number %e A138125 A000668 ............ A061652 ................. A000396........ %e A138125 (3) ................ (2) ..................... (6) ........... (For n=1, only) %e A138125 (7) ................ (4) ..................... (8) ........... %e A138125 (1) ................ (6) ..................... (6) ........... %t A138125 Mod[#,10]&/@(2^(MersennePrimeExponent[Range[47]]-1)) (* _Harvey P. Dale_, Feb 23 2023 *) %Y A138125 Cf. A000030, A000396, A000668, A077648, A019279, A061652, A135613, A135617, A138125. %K A138125 base,nonn,less %O A138125 1,1 %A A138125 _Omar E. Pol_, Apr 01 2008, corrected Apr 03 2008 %E A138125 a(40)-a(47) from _Jinyuan Wang_, Mar 14 2020