This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138134 #45 Feb 01 2019 05:33:07 %S A138134 0,5,60,670,7435,82460,914500,10141965,112476120,1247379290, %T A138134 13833648315,153417510760,1701426266680,18869106444245, %U A138134 209261597153380,2320746675131430,25737475023599115,285432971934721700,3165500166305537820 %N A138134 a(n) = Sum_{i=0..n} Fibonacci(5*i). %C A138134 Partial sums of A102312. %C A138134 Other sequences in the OEIS related to the sum of Fibonacci(k*n) (although not defined as such) are: %C A138134 k = 1: A000071 = Fibonacci(n) - 1 (delete leading 0); %C A138134 k = 2: A027941 = Fibonacci(2n+1) - 1; %C A138134 k = 3: A099919 = (Fibonacci(3n+2) - 1)/2; %C A138134 k = 4: A058038 = Fibonacci(2n)*Fibonacci(2n+2); %C A138134 k = 6: A053606 = (Fibonacci(6n+3) - 2)/4. %C A138134 These sequences appear to be second order linear inhomogeneous sequences of the form: a(0) = 0, a(1) = Fibonacci(k), a(n) = L(k)*a(n-1) + (-1)^(k+1)*a(n-2) + Fibonacci(k), where L(n) = A000032(n), n > 1. %C A138134 The Koshy reference gives the closed form: %C A138134 Sum_{i=0..n} Fibonacci(k*i) = (Fibonacci(n*k+k) - (-1)^k*Fibonacci(n*k) - Fibonacci(k))/(L(k) - (-1)^k - 1). %D A138134 Thomas Koshy; Fibonacci and Lucas numbers with applications, Wiley,2001, p. 86. %H A138134 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-10,-1). %F A138134 G.f.: 5*x/((x - 1)*(x^2 + 11*x - 1)). - _R. J. Mathar_, Dec 09 2010 %F A138134 a(n) = 11*a(n) + a(n-1) + 5, n > 1. %F A138134 a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3), n > 2. %F A138134 a(n) = 1/11*(Fibonacci(5*n+5) + Fibonacci(5n) - 5). %p A138134 with(combinat):fs5:=n-> sum(fibonacci(5*k),k=0..n): %p A138134 seq(fs5(n),n=0..18) %o A138134 (PARI) a(n)=(fibonacci(5*n+5)+fibonacci(5*n)-5)/11 \\ _Charles R Greathouse IV_, Jun 11 2015 %Y A138134 Cf. A000071, A027941, A099919, A058038, A102312, A053606. %Y A138134 Cf. also A000032, A000045. %K A138134 nonn,easy %O A138134 0,2 %A A138134 _Gary Detlefs_, Dec 07 2010