cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138137 First differences of A006128.

This page as a plain text file.
%I A138137 #73 Jul 27 2021 21:19:08
%S A138137 1,2,3,6,8,15,19,32,42,64,83,124,157,224,288,395,502,679,854,1132,
%T A138137 1422,1847,2307,2968,3677,4671,5772,7251,8908,11110,13572,16792,20439,
%U A138137 25096,30414,37138,44798,54389,65386,78959,94558,113687,135646,162375,193133
%N A138137 First differences of A006128.
%C A138137 Number of parts in the last section of the set of partitions of n (see A135010, A138121).
%C A138137 Sum of largest parts in all partitions in the head of the last section of the set of partitions of n. - _Omar E. Pol_, Nov 07 2011
%C A138137 From _Omar E. Pol_, Feb 16 2021: (Start)
%C A138137 Convolution of A341062 and A000041.
%C A138137 Convolution of A000005 and A002865.
%C A138137 a(n) is also the total number of parts in the n-th section of the set of partitions of any positive integer >= n.
%C A138137 a(n) is also the total number of divisors of all terms in the n-th row of triangle A336811. These divisors are also all parts in the last section of the set of partitions of n. (End)
%H A138137 Alois P. Heinz, <a href="/A138137/b138137.txt">Table of n, a(n) for n = 1..1000</a>
%F A138137 a(n) = A006128(n) - A006128(n-1).
%F A138137 a(n) = A000041(n-1) + A138135(n). - _Omar E. Pol_, Nov 07 2011
%F A138137 a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(6*n/Pi^2)) / (8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 21 2016
%F A138137 G.f.: Sum_{i>=1} i*x^i * Product_{j=2..i} 1/(1 - x^j). - _Ilya Gutkovskiy_, Apr 04 2017
%e A138137 From _Omar E. Pol_, Feb 19 2012: (Start)
%e A138137 Illustration of initial terms (n = 1..6) as sums of the first columns from the last sections of the first six natural numbers (or from the first six sections of 6):
%e A138137 .                                           6
%e A138137 .                                           3+3
%e A138137 .                                           4+2
%e A138137 .                                           2+2+2
%e A138137 .                              5              1
%e A138137 .                              3+2              1
%e A138137 .                    4           1              1
%e A138137 .                    2+2           1              1
%e A138137 .            3         1           1              1
%e A138137 .      2       1         1           1              1
%e A138137 .  1     1       1         1           1              1
%e A138137 . --- ----- ------- --------- ----------- --------------
%e A138137 .  1,  2,    3,      6,        8,          15,
%e A138137 ...
%e A138137 Also, we can see that the sequence gives the number of parts in each section. For the number of odd/even parts (and more) see A207031, A207032 and also A206563. (End)
%e A138137 From _Omar E. Pol_, Aug 16 2013: (Start)
%e A138137 The geometric model looks like this:
%e A138137 .                                           _ _ _ _ _ _
%e A138137 .                                          |_ _ _ _ _ _|
%e A138137 .                                          |_ _ _|_ _ _|
%e A138137 .                                          |_ _ _ _|_ _|
%e A138137 .                               _ _ _ _ _  |_ _|_ _|_ _|
%e A138137 .                              |_ _ _ _ _|           |_|
%e A138137 .                     _ _ _ _  |_ _ _|_ _|           |_|
%e A138137 .                    |_ _ _ _|         |_|           |_|
%e A138137 .             _ _ _  |_ _|_ _|         |_|           |_|
%e A138137 .       _ _  |_ _ _|       |_|         |_|           |_|
%e A138137 .   _  |_ _|     |_|       |_|         |_|           |_|
%e A138137 .  |_|   |_|     |_|       |_|         |_|           |_|
%e A138137 .
%e A138137 .   1    2      3        6          8           15
%e A138137 .
%e A138137 (End)
%e A138137 On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the divisors of these terms are [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]. There are 15 divisors so a(6) = 15. - _Omar E. Pol_, Jul 27 2021
%p A138137 b:= proc(n, i) option remember; local f, g;
%p A138137       if n=0 then [1, 0]
%p A138137     elif i<1 then [0, 0]
%p A138137     elif i>n then b(n, i-1)
%p A138137     else f:= b(n, i-1); g:= b(n-i, i);
%p A138137          [f[1]+g[1], f[2]+g[2] +g[1]]
%p A138137       fi
%p A138137     end:
%p A138137 a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
%p A138137 seq(a(n), n=1..50);  # _Alois P. Heinz_, Feb 19 2012
%t A138137 b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]]+g[[1]], f[[2]]+g[[2]]+g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Mar 03 2014, after _Alois P. Heinz_ *)
%t A138137 Table[PartitionsP[n - 1] + Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 45}] (* _Robert Price_, May 01 2020 *)
%Y A138137 Column 1 of A207031.
%Y A138137 Cf. A000005, A000041, A002865, A006128, A135010, A138121, A182703, A336811, A336812, A338156, A340035, A341062.
%K A138137 easy,nonn
%O A138137 1,2
%A A138137 _Omar E. Pol_, Mar 18 2008