cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138138 A shell model of partitions. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 2, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 4, 3, 5, 2, 6, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 16 2008, Mar 25 2008

Keywords

Comments

The Integrated Diagram of Partitions is a shell model of partitions of a number. Partitions of n contains all partitions of the previous numbers. The number of shells of the partitions of n is equal to n. The number of parts of the last section of the set of partitions of n is A138137(n)=A006128(n)-A006128(n-1) and equal to the number of terms of row n. The number of terms of row n that are equal to 1 is A000041(n-1). The last term of row n is n. The shell model of partitions has several 2D and 3D versions.

Examples

			........................................
.. Integrated Diagram of Partitions ...
........... for n = 1 to 9 ............
.......................................
Partition number \ n = 1 2 3 4 5 6 7 8 9
........................................
.1) A000041(1)= 1 .... 1 1 1 1 1 1 1 1 1
.2) A000041(2)= 2 .... . 2 1 1 1 1 1 1 1
.3) A000041(3)= 3 .... . . 3 1 1 1 1 1 1
.4) .................. . 2 . 2 1 1 1 1 1
.5) A000041(4)= 5 .... . . . 4 1 1 1 1 1
.6) .................. . . 3 . 2 1 1 1 1
.7) A000041(5)= 7 .... . . . . 5 1 1 1 1
.8) .................. . 2 . 2 . 2 1 1 1
.9) .................. . . 3 . . 3 1 1 1
10) .................. . . . 4 . 2 1 1 1
11) A000041(6)=11 .... . . . . . 6 1 1 1
12) .................. . . 3 . 2 . 2 1 1
13) .................. . . . 4 . . 3 1 1
14) .................. . . . . 5 . 2 1 1
15) A000041(7)=15 .... . . . . . . 7 1 1
16) .................. . 2 . 2 . 2 . 2 1
17) .................. . . 3 . . 3 . 2 1
18) .................. . . . 4 . 2 . 2 1
19) .................. . . . 4 . . . 4 1
20) .................. . . . . 5 . . 3 1
21) .................. . . . . . 6 . 2 1
22) A000041(8)=22 .... . . . . . . . 8 1
23) .................. . . 3 . 2 . 2 . 2
24) .................. . . 3 . . 3 . . 3
25) .................. . . . 4 . . 3 . 2
26) .................. . . . . 5 . 2 . 2
27) .................. . . . . 5 . . . 4
28) .................. . . . . . 6 . . 3
29) .................. . . . . . . 7 . 2
30) A000041(9)=30 .... . . . . . . . . 9
.......................................
Triangle begins:
1
1,2
1,1,3,
1,1,1,2,2,4
1,1,1,1,1,2,3,5
1,1,1,1,1,1,1,2,2,2,3,3,2,4,6
1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,2,5,7
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,2,2,4,4,4,3,5,2,6,8
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,2,3,4,2,2,5,4,5,3,6,2,7,9
		

Crossrefs

Cf. A000041, A006128, A138137. See A135010 for another version.

Programs

  • Mathematica
    Table[ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ Reverse@Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], {n, 8}] // Flatten (* Robert Price, May 22 2020 *)