cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138145 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.

This page as a plain text file.
%I A138145 #18 Aug 09 2024 02:18:59
%S A138145 1,11,111,1111,11111,111111,1110111,11100111,111000111,1110000111,
%T A138145 11100000111,111000000111,1110000000111,11100000000111,
%U A138145 111000000000111,1110000000000111,11100000000000111,111000000000000111
%N A138145 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1, 1 and infinite 0's.
%C A138145 a(n) is also A147596(n) written in base 2. - _Omar E. Pol_, Nov 08 2008
%H A138145 Paolo Xausa, <a href="/A138145/b138145.txt">Table of n, a(n) for n = 1..995</a>
%H A138145 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F A138145 From _Colin Barker_, Sep 15 2013: (Start)
%F A138145 a(n) = 111+111*10^(n-3) for n>5.
%F A138145 a(n) = 11*a(n-1)-10*a(n-2).
%F A138145 G.f.: -x*(10*x^2-1)*(100*x^4+10*x^2+1) / ((x-1)*(10*x-1)). (End)
%e A138145 n .... a(n)
%e A138145 1 .... 1
%e A138145 2 .... 11
%e A138145 3 .... 111
%e A138145 4 .... 1111
%e A138145 5 .... 11111
%e A138145 6 .... 111111
%e A138145 7 .... 1110111
%e A138145 8 .... 11100111
%e A138145 9 .... 111000111
%e A138145 10 ... 1110000111
%e A138145 11 ... 11100000111
%e A138145 12 ... 111000000111
%e A138145 13 ... 1110000000111
%t A138145 Table[If[n < 7, (10^n - 1)/9, 111 + 111*10^(n-3)], {n, 25}] (* or *)
%t A138145 LinearRecurrence[{11, -10}, {1, 11, 111, 1111, 11111, 111111, 1110111}, 25] (* _Paolo Xausa_, Aug 08 2024 *)
%o A138145 (PARI) Vec(-x*(10*x^2-1)*(100*x^4+10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ _Colin Barker_, Sep 15 2013
%Y A138145 Cf. A000533, A138144.
%Y A138145 Cf. A138118, A138119, A138120, A138146, A138721, A138826, A147596. [From _Omar E. Pol_, Nov 08 2008]
%K A138145 easy,nonn,base
%O A138145 1,2
%A A138145 _Omar E. Pol_, Mar 29 2008
%E A138145 Better definition from _Omar E. Pol_, Nov 16 2008