This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138148 #62 Feb 16 2025 08:33:07 %S A138148 0,101,11011,1110111,111101111,11111011111,1111110111111, %T A138148 111111101111111,11111111011111111,1111111110111111111, %U A138148 111111111101111111111,11111111111011111111111,1111111111110111111111111,111111111111101111111111111,11111111111111011111111111111 %N A138148 Cyclops numbers with binary digits only. %C A138148 All members are palindromes A002113. The first five members are mentioned in A129868. %C A138148 Also, binary representation of A129868. %C A138148 a(A090748(n)) is equal to A138831(n), the n-th perfect number minus 1, written in base 2. %C A138148 Except for the first term (replace 0 with 1) the binary representation of the n-th iteration of the elementary cellular automaton, Rule 219 starting with a single ON (black) cell. - _Robert Price_, Feb 21 2016 %C A138148 a(1) = 101 is only prime number in this sequence since a(n) = (10^(n+1)+1)*(10^n-1)/9. - _Altug Alkan_, May 11 2016 %D A138148 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55. %H A138148 Gennady Eremin, <a href="https://arxiv.org/abs/2405.16143">Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant</a>, arXiv:2405.16143 [math.CO], 2024. See pp. 9, 14. %H A138148 Brady Haran and Simon Pampena, <a href="https://www.youtube.com/watch?v=HPfAnX5blO0">Glitch Primes and Cyclops Numbers</a>, Numberphile video, video (2015). %H A138148 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A138148 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A138148 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %H A138148 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A138148 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000). %F A138148 From _Colin Barker_, Feb 21 2013: (Start) %F A138148 a(n) = (-1-9*10^n+10^(1+2*n))/9. %F A138148 G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End) %F A138148 a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - _Wesley Ivan Hurt_, Dec 08 2015 %F A138148 a(n) = A000533(n+1)*A002275(n). - _Altug Alkan_, May 12 2016 %F A138148 E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - _Ilya Gutkovskiy_, May 12 2016 %F A138148 a(n) = A002275(2n+1) - A011557(n). - _M. F. Hasler_, Feb 08 2020 %e A138148 n ........ a(n) .... A129868(n): value of a(n) read in base 2. %e A138148 0 ......... 0 ......... 0 %e A138148 1 ........ 101 ........ 5 %e A138148 2 ....... 11011 ....... 27 %e A138148 3 ...... 1110111 ...... 119 %e A138148 4 ..... 111101111 ..... 495 %e A138148 5 .... 11111011111 .... 2015 %e A138148 6 ... 1111110111111 ... 8127 %p A138148 A138148:=n->(-1-9*10^n+10^(1+2*n))/9: seq(A138148(n), n=0..15); # _Wesley Ivan Hurt_, Dec 08 2015 %t A138148 Table[(-1 - 9*10^n + 10^(1 + 2*n))/9, {n, 0, 15}] (* _Wesley Ivan Hurt_, Dec 08 2015 *) %o A138148 (PARI) for(n=1, 20, if(n%2==1, c=((10^n-1)/9)-10^((n-1)/2); print1(c, ", "))) \\ _Felix Fröhlich_, Jul 07 2014 %o A138148 (PARI) apply( {A138148(n)=10^(n*2+1)\9-10^n}, [0..15]) \\ _M. F. Hasler_, Feb 08 2020 %o A138148 (Magma) [(-1 - 9*10^n + 10^(1 + 2*n))/9 : n in [0..15]]; // _Wesley Ivan Hurt_, Dec 08 2015 %Y A138148 Cyclops numbers: A134808. Cf. A002113, A129868. %Y A138148 Cf. A000396, A090748, A135627, A138831. %Y A138148 Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n). %K A138148 easy,nonn,base %O A138148 0,2 %A A138148 _Omar E. Pol_, Mar 18 2008 %E A138148 More terms from _Omar E. Pol_, Feb 09 2020