cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138163 Number of permutations of {1,2,...,n} containing exactly 5 occurrences of the pattern 132.

Original entry on oeis.org

5, 55, 394, 2225, 11539, 57064, 273612, 1283621, 5924924, 27005978, 121861262, 545368160, 2423923480, 10710273856, 47085144255, 206085075295, 898489543020, 3903621095130, 16906888008960, 73018012573950, 314540265217362
Offset: 5

Views

Author

Emeric Deutsch, Mar 28 2008

Keywords

Examples

			a(5)=5 because we have 13542, 14532, 15243, 15342 and 15423.
		

References

  • B. K. Nakamura, Computational methods in permutation patterns, PhD Dissertation, Rutgers University, May 2013.

Crossrefs

Column k=5 of A263771.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (1/120)*(n^12+170*n^11 +1861*n^10 -88090*n^9 -307617*n^8 +27882510*n^7 -348117457*n^6 +2119611370*n^5 -6970280884*n^4 +10530947320*n^3 +2614396896*n^2 -30327454080*n +29059430400) *factorial(2*n-15) / (factorial(n)*factorial(n-7)) end proc: 5, 55, 394, seq(a(n), n = 8 .. 25);
  • Mathematica
    terms = 21; offset = 5;
    P[x_] := 14 x^5 - 17 x^4 + x^3 - 16 x^2 + 14 x - 2;
    Q[x_] := -50 x^11 - 2568 x^10 - 10826 x^9 + 16252 x^8 - 12466 x^7 + 16184 x^6 - 16480 x^5 + 9191 x^4 - 2893 x^3 + 520 x^2 - 50 x + 2;
    Drop[CoefficientList[(1/2) (P[x] + Q[x]/(1 - 4 x)^(9/2)) + O[x]^(terms + offset), x], offset] (* Jean-François Alcover, Dec 13 2017 *)

Formula

a(n) = (n^12+170n^11+1861n^10-88090n^9-307617n^8+27882510n^7 -348117457n^6 +2119611370n^5 -6970280884n^4 +10530947320n^3 +2614396896n^2 -30327454080n +29059430400)(2n-15)!/[120 n!(n-7)! ] for n>=8; a(5)=5; a(6)=55; a(7)=394.
G.f.: (1/2)[P(x) + Q(x)/(1-4x)^(9/2)], where P(x) = 14x^5 - 17x^4 + x^3 - 16x^2 + 14x - 2, Q(x)= -50x^11 - 2568x^10 - 10826x^9 + 16252x^8 - 12466x^7 + 16184x^6 - 16480x^5 + 9191x^4 - 2893x^3 + 520x^2 - 50x + 2.