cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138177 Triangle T(n,k) read by rows: number of k X k symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.

This page as a plain text file.
%I A138177 #43 Nov 17 2018 16:20:46
%S A138177 1,1,2,1,4,4,1,7,15,10,1,10,36,52,26,1,14,74,176,190,76,1,18,132,460,
%T A138177 810,696,232,1,23,222,1060,2705,3756,2674,764,1,28,347,2180,7565,
%U A138177 15106,17262,10480,2620,1,34,525,4204,19013,51162,83440,80816,42732,9496,1,40
%N A138177 Triangle T(n,k) read by rows: number of k X k symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.
%C A138177 See the Brualdi/Ma reference for the connection to A161126. - _Joerg Arndt_, Nov 02 2014
%C A138177 T(n,k) is also the number of semistandard Young tableaux of size n whose entries span the interval 1..k. See also _Gus Wiseman_'s comment in A138178. The T(4,2) = 7 semi-standard Young tableaux of size 4 spanning the interval 1..2 are:
%C A138177    11  122  112  111  1222  1122  1112
%C A138177    22  2    2    2                      . - _Jacob Post_, Jun 15 2018
%H A138177 Alois P. Heinz, <a href="/A138177/b138177.txt">Rows n = 1..141, flattened</a>
%H A138177 Richard A. Brualdi, Shi-Mei Ma, <a href="http://dx.doi.org/10.1016/j.ejc.2014.08.026">Enumeration of involutions by descents and symmetric matrices</a>, European Journal of Combinatorics, vol.43, pp.220-228, (January 2015).
%H A138177 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/SemistandardTableaux">Semistandard Young tableaux</a>
%H A138177 Samantha Dahlberg, <a href="http://arxiv.org/abs/1410.7356">Combinatorial Proofs of Identities Involving Symmetric Matrices</a>, arXiv:1410.7356 [math.CO], (27-October-2014)
%F A138177 T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A210391(n,k-i). - _Alois P. Heinz_, Apr 06 2015
%e A138177 Triangle T(n,k) begins:
%e A138177   1;
%e A138177   1,  2;
%e A138177   1,  4,   4;
%e A138177   1,  7,  15,   10;
%e A138177   1, 10,  36,   52,   26;
%e A138177   1, 14,  74,  176,  190,   76;
%e A138177   1, 18, 132,  460,  810,  696,  232;
%e A138177   1, 23, 222, 1060, 2705, 3756, 2674, 764;
%e A138177   ...
%p A138177 gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
%p A138177 A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
%p A138177 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
%p A138177 seq(seq(T(n, k), k=1..n), n=1..12);  # _Alois P. Heinz_, Apr 06 2015
%t A138177 gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := Coefficient[ Series [gf[k], {x, 0, n+1}], x, n]; T[n_, k_] := Sum[(-1)^j*Binomial[k, j]*A[n, k-j], {j, 0, k}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jan 31 2016, after _Alois P. Heinz_ *)
%Y A138177 Cf. (row sums) A138178, A135589, A135588, A161126, A210391.
%Y A138177 Main diagonal gives A000085. - _Alois P. Heinz_, Apr 06 2015
%Y A138177 T(2n,n) gives A266305.
%Y A138177 T(n^2,n) gives A268309.
%K A138177 nonn,tabl
%O A138177 1,3
%A A138177 _Vladeta Jovovic_, Mar 03 2008