cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

This page as a plain text file.
%I A138178 #39 Dec 18 2022 12:09:34
%S A138178 1,1,3,9,33,125,531,2349,11205,55589,291423,1583485,8985813,52661609,
%T A138178 319898103,2000390153,12898434825,85374842121,580479540219,
%U A138178 4041838056561,28824970996809,210092964771637,1564766851282299,11890096357039749,92151199272181629
%N A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
%C A138178 Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - _Gus Wiseman_, Feb 23 2018
%H A138178 Alois P. Heinz, <a href="/A138178/b138178.txt">Table of n, a(n) for n = 0..500</a>
%F A138178 G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
%F A138178 G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - _Vladeta Jovovic_, Dec 09 2009
%e A138178 a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
%e A138178 From _Gus Wiseman_, Feb 23 2018: (Start)
%e A138178 The a(3) = 9 normal semistandard Young tableaux:
%e A138178 1   1 2   1 3   1 2   1 1   1 2 3   1 2 2   1 1 2   1 1 1
%e A138178 2   3     2     2     2
%e A138178 3
%e A138178 (End)
%e A138178 From _Gus Wiseman_, Nov 14 2018: (Start)
%e A138178 The a(4) = 33 matrices:
%e A138178 [4]
%e A138178 .
%e A138178 [30][21][20][11][10][02][01]
%e A138178 [01][10][02][11][03][20][12]
%e A138178 .
%e A138178 [200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
%e A138178 [010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
%e A138178 [001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
%e A138178 .
%e A138178 [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
%e A138178 [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
%e A138178 [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
%e A138178 [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
%e A138178 (End)
%p A138178 gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # _Alois P. Heinz_, Sep 25 2008
%t A138178 Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}]  (* _Vaclav Kotesovec_, Jul 03 2014 *)
%t A138178 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* _Gus Wiseman_, Nov 14 2018 *)
%Y A138178 Row sums of A138177.
%Y A138178 Cf. A007716, A120733, A135588, A296188.
%Y A138178 Cf. A057151, A104601, A104602, A120732, A316983, A320796, A321401, A321405, A321407.
%K A138178 easy,nonn
%O A138178 0,3
%A A138178 _Vladeta Jovovic_, Mar 03 2008
%E A138178 More terms from _Alois P. Heinz_, Sep 25 2008