A138182 Smallest summand in the Zeckendorf representation of the n-th prime.
2, 3, 5, 2, 3, 13, 1, 1, 2, 8, 2, 3, 2, 1, 13, 1, 1, 1, 1, 3, 5, 3, 2, 89, 8, 1, 1, 5, 2, 3, 1, 8, 1, 3, 5, 2, 13, 1, 2, 8, 1, 3, 13, 2, 1, 55, 1, 3, 2, 1, 233, 1, 8, 5, 3, 1, 2, 1, 2, 1, 3, 5, 1, 2, 1, 8, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 1, 2, 3, 3, 8, 2, 2, 1, 2, 3, 1, 1, 8, 2, 1, 13, 21, 1, 1, 3, 1, 144, 2, 2
Offset: 1
Examples
a(5) = 3 because the Zeckendorf representation of the 5th prime is 11 = 3 + 8.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Python
from sympy import prime def A138182(n): m, tlist = prime(n), [1,2] while tlist[-1]+tlist[-2] <= m: tlist.append(tlist[-1]+tlist[-2]) for d in tlist[::-1]: if d == m: return d elif d < m: m -= d # Chai Wah Wu, Jun 14 2018
Formula
Extensions
a(8) replaced by 1. Sequence extended beyond a(18) - R. J. Mathar, Oct 23 2010