This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138235 #29 Feb 16 2025 08:33:07 %S A138235 1,3,5,6,8,10,11,13,15,16,18,20,21,23,25,27,28,30,32,33,35,37,38,40, %T A138235 42,43,45,47,49,50,52,54,55,57,59,60,62,64,65,67,69,70,72,74,76,77,79, %U A138235 81,82,84,86,87,89,91,92,94,96,98,99,101,103,104,106,108,109,111,113,114 %N A138235 a(n) = floor(n*(6 + sqrt(6))/5). %C A138235 Beatty sequence for (6+sqrt(6))/5; complement of A022840; %C A138235 a(n) = A138236(A022840(n)) and A138236(a(n)) = A022840(n). %C A138235 Numbers k such that A248515(k+1) = A248515(k) = least number h such that 1 - h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...). - _Clark Kimberling_, Jun 16 2015 %H A138235 Reinhard Zumkeller, <a href="/A138235/b138235.txt">Table of n, a(n) for n = 1..1000</a> %H A138235 Clark Kimberling, <a href="https://www.emis.de/journals/INTEGERS/papers/q15/q15.Abstract.html">Beatty sequences and trigonometric functions</a>, Integers 16 (2016), #A15. %H A138235 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a> %H A138235 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %t A138235 With[{c=6+Sqrt[6]},Table[Floor[(n*c)/5],{n,80}]] (* _Harvey P. Dale_, Feb 25 2013 *) %o A138235 (Magma) [Floor(n*(6+Sqrt(6))/5): n in [1..70]]; // _Vincenzo Librandi_, Jun 17 2015 %Y A138235 Cf. A248515, A022840 (complement). %K A138235 nonn %O A138235 1,2 %A A138235 _Reinhard Zumkeller_, Mar 07 2008