cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138240 Expansion of (1/4)(1-sqrt(1-12x)/sqrt(1-4x)).

Original entry on oeis.org

0, 1, 6, 40, 296, 2400, 20928, 192768, 1848960, 18277888, 184890368, 1904259072, 19898765312, 210424545280, 2247494172672, 24209586782208, 262696649785344, 2868744309571584, 31504024885002240, 347697247933169664
Offset: 0

Views

Author

Paul Barry, Mar 07 2008

Keywords

Comments

Hankel transform of a(n) is -4^comb(n,2)*A099156(n)=-4^comb(n,2)*[x^n](x/(1-8x+4x^2)).
Hankel transform of a(n+1) is 4^comb(n+1,2)=A053763(n+1).
Hankel transform of a(n+2) is 4^comb(n+1,2)*A102591(n+1)=4^comb(n+1,2)*[x^n](6-4x)/(1-8x+4x^2).

Crossrefs

Cf. A104498.

Programs

  • Mathematica
    CoefficientList[Series[1/4*(1-Sqrt[1-12*x]/Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

Recurrence: n*a(n) = 4*(4*n-5)*a(n-1) - 48*(n-2)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(2*n-7/2)*3^(n+1/2)/(sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012