cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138277 Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4 (with a single 1 as initial condition).

This page as a plain text file.
%I A138277 #15 Aug 20 2018 05:20:56
%S A138277 1,5,13,49,109,473,1081,4037,8749,37913,88465,325021,717337,3108461,
%T A138277 7095613,26490289,57395629,248714393,580333585,2132141341,4707150193,
%U A138277 20397650837,46548642709,173816036825,376630110937,1632063814061,3808148899477,13991111158153
%N A138277 Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4 (with a single 1 as initial condition).
%C A138277 See A138276 for the corresponding sequence for a Bethe lattice with coordination number 3.
%C A138277 See A001045 for the corresponding sequence on a 1D lattice (equivalent to a k=2 Bethe lattice); this is based on the Jacobsthal sequence A001045.
%C A138277 See A072272 for the corresponding sequence on a 2D lattice (based on A007483).
%C A138277 Related to Cellular Automata.
%H A138277 Alois P. Heinz, <a href="/A138277/b138277.txt">Table of n, a(n) for n = 0..1000</a>
%H A138277 Jens Christian Claussen, <a href="http://www.theo-physik.uni-kiel.de/%7Eclaussen/rule150.pdf">Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration</a> [broken link]
%H A138277 Jens Christian Claussen, <a href="http://arXiv.org/abs/math.CO/0410429">Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration</a>, arXiv:math.CO/0410429.
%H A138277 Jan Nagler and Jens Christian Claussen (2005), 1/f^alpha spectra in elementary cellular automata and fractal signals, <a href="http://dx.doi.org/10.1103/PhysRevE.71.067103">Phys. Rev. E 71 (2005), 067103</a>
%F A138277 The total number of nodes in state 1 after n iterations (starting with a single 1) of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4. Rule 150 sums the values of the focal node and its k neighbors, then applies modulo 2.
%e A138277 Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and themselves being 1; the sum being 2, modulo 2, resulting in x_1=0.
%e A138277 The focal node and outmost nodes x_n are always 1.
%e A138277 Thus one has the patterns
%e A138277 x_0, x_1, x_2, ...
%e A138277 1
%e A138277 1 1
%e A138277 1 0 1
%e A138277 1 0 1 1
%e A138277 1 0 0 0 1
%e A138277 1 1 0 1 1 1
%e A138277 1 0 0 0 1 0 1
%e A138277 1 1 0 1 1 0 1 1
%e A138277 1 0 0 0 0 0 0 0 1
%e A138277 (N.B.: This is equivalent to the right half plane of Rule 150 in 1D.)
%e A138277 The nodes have the multiplicities 1,4,12,36,108,324,972,...
%e A138277 The sequence then is obtained by
%e A138277 a(n)= x_0(n) + 4*(x_1(n) + sum_(i=2...n) x_i(n) * 3^(i-1)).
%t A138277 nmax = 30;
%t A138277 states = CellularAutomaton[150, {{1}, 0}, nmax];
%t A138277 T[n_, i_] := states[[n+1, nmax+i+1]];
%t A138277 a[n_] := T[n, 0] + 4(T[n, 1]+Sum[3^(i-1) T[n, i], {i, 2, n}]);
%t A138277 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Aug 20 2018 *)
%Y A138277 Cf. A138276, A072272, A007483, A071053, A001045.
%K A138277 nonn
%O A138277 0,2
%A A138277 Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008
%E A138277 a(9)-a(27) from _Alois P. Heinz_, Jun 28 2015