This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138277 #15 Aug 20 2018 05:20:56 %S A138277 1,5,13,49,109,473,1081,4037,8749,37913,88465,325021,717337,3108461, %T A138277 7095613,26490289,57395629,248714393,580333585,2132141341,4707150193, %U A138277 20397650837,46548642709,173816036825,376630110937,1632063814061,3808148899477,13991111158153 %N A138277 Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4 (with a single 1 as initial condition). %C A138277 See A138276 for the corresponding sequence for a Bethe lattice with coordination number 3. %C A138277 See A001045 for the corresponding sequence on a 1D lattice (equivalent to a k=2 Bethe lattice); this is based on the Jacobsthal sequence A001045. %C A138277 See A072272 for the corresponding sequence on a 2D lattice (based on A007483). %C A138277 Related to Cellular Automata. %H A138277 Alois P. Heinz, <a href="/A138277/b138277.txt">Table of n, a(n) for n = 0..1000</a> %H A138277 Jens Christian Claussen, <a href="http://www.theo-physik.uni-kiel.de/%7Eclaussen/rule150.pdf">Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration</a> [broken link] %H A138277 Jens Christian Claussen, <a href="http://arXiv.org/abs/math.CO/0410429">Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration</a>, arXiv:math.CO/0410429. %H A138277 Jan Nagler and Jens Christian Claussen (2005), 1/f^alpha spectra in elementary cellular automata and fractal signals, <a href="http://dx.doi.org/10.1103/PhysRevE.71.067103">Phys. Rev. E 71 (2005), 067103</a> %F A138277 The total number of nodes in state 1 after n iterations (starting with a single 1) of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4. Rule 150 sums the values of the focal node and its k neighbors, then applies modulo 2. %e A138277 Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and themselves being 1; the sum being 2, modulo 2, resulting in x_1=0. %e A138277 The focal node and outmost nodes x_n are always 1. %e A138277 Thus one has the patterns %e A138277 x_0, x_1, x_2, ... %e A138277 1 %e A138277 1 1 %e A138277 1 0 1 %e A138277 1 0 1 1 %e A138277 1 0 0 0 1 %e A138277 1 1 0 1 1 1 %e A138277 1 0 0 0 1 0 1 %e A138277 1 1 0 1 1 0 1 1 %e A138277 1 0 0 0 0 0 0 0 1 %e A138277 (N.B.: This is equivalent to the right half plane of Rule 150 in 1D.) %e A138277 The nodes have the multiplicities 1,4,12,36,108,324,972,... %e A138277 The sequence then is obtained by %e A138277 a(n)= x_0(n) + 4*(x_1(n) + sum_(i=2...n) x_i(n) * 3^(i-1)). %t A138277 nmax = 30; %t A138277 states = CellularAutomaton[150, {{1}, 0}, nmax]; %t A138277 T[n_, i_] := states[[n+1, nmax+i+1]]; %t A138277 a[n_] := T[n, 0] + 4(T[n, 1]+Sum[3^(i-1) T[n, i], {i, 2, n}]); %t A138277 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Aug 20 2018 *) %Y A138277 Cf. A138276, A072272, A007483, A071053, A001045. %K A138277 nonn %O A138277 0,2 %A A138277 Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008 %E A138277 a(9)-a(27) from _Alois P. Heinz_, Jun 28 2015