cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A138276 Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 3 (with a single 1 as initial condition).

Original entry on oeis.org

1, 4, 6, 18, 30, 90, 102, 306, 510, 1530, 1542, 4626, 7110
Offset: 0

Views

Author

Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008

Keywords

Comments

See A138277 for the corresponding sequence for a Bethe lattice with coordination number 4.
See A001045 for the corresponding sequence on a 1D lattice (equivalent to a k=2 Bethe lattice); this is based on the Jacobsthal sequence A001045.
See A072272 for the corresponding sequence on a 2D lattice (based on A007483).
Related to Cellular Automata.

Examples

			Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and
themselves being 1; the sum being 2, modulo 2, resulting in x_1=0. The focal node itself is 1 and has 3 neighbors being 1, sum being 4, modulo 2, resulting in x_0=0. The outmost nodes x_n are always 1.
Thus one has the patterns
x_0, x_1, x_2, ...
1
1 1
0 0 1
0 0 1 1
0 0 1 0 1
0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1
After 2 time steps, the x_0 and x_1 stay frozen at zero and the remaining x_i are generated by Rule 60 (or Rule 90 on half lattice spacing).
These nodes have multiplicities 1,3,6,12,24,48,96,192,384,768,...
The sequence then is obtained by
a(n) = x_0(n) + 3 * Sum_{i=1..n} x_i(n) * 2^(i-1)
		

Crossrefs

Formula

The total number of nodes in state 1 after n iterations (starting with a single 1) of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 3. Rule 150 sums the values of the focal node and its k neighbors, then applies modulo 2.
Showing 1-1 of 1 results.