This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138281 #12 Sep 08 2022 08:45:33 %S A138281 1,3,9,31,97,308,969,3051,9601,30210,95049,299052,940897,2960313, %T A138281 9313929,29304086,92198401,290080547,912670089,2871501385,9034502497, %U A138281 28424933309,89432354889,281377831710,885289046401,2785353383794,8763458109129,27572156006234 %N A138281 a(n) = floor((sqrt(2) + sqrt(3))^n). %H A138281 G. C. Greubel, <a href="/A138281/b138281.txt">Table of n, a(n) for n = 0..1000</a> %F A138281 a(2*n) = floor(A001079(n) + A001078(n)*sqrt(6)); %F A138281 (sqrt(2) + sqrt(3))^(2*n) = A001079(n) + A001078(n)*sqrt(6); %F A138281 a(2*n+1) = floor(A054320(n)*sqrt(2) + A138288(n)*sqrt(3)); %F A138281 (sqrt(2)+sqrt(3))^(2*n+1) = A054320(n)*sqrt(2) + A138288(n)*sqrt(3). %t A138281 Table[Floor[(Sqrt[2] + Sqrt[3])^n], {n, 0, 50}] (* _G. C. Greubel_, Jan 27 2018 *) %o A138281 (PARI) for(n=0,50, print1(floor((sqrt(2) + sqrt(3))^n), ", ")) \\ _G. C. Greubel_, Jan 27 2018 %o A138281 (Magma) [Floor((Sqrt(2) + Sqrt(3))^n): n in [0..50]]; // _G. C. Greubel_, Jan 27 2018 %Y A138281 Cf. A089078, A110117, A121503, A135611, A135798. %K A138281 nonn %O A138281 0,2 %A A138281 _Reinhard Zumkeller_, Mar 12 2008 %E A138281 Terms a(16) and a(18) corrected, terms a(19) onward added by _G. C. Greubel_, Jan 27 2018