This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138288 #53 Jan 25 2024 04:51:28 %S A138288 1,9,89,881,8721,86329,854569,8459361,83739041,828931049,8205571449, %T A138288 81226783441,804062262961,7959395846169,78789896198729, %U A138288 779939566141121,7720605765212481,76426118085983689,756540575094624409,7488979632860260401,74133255753507979601,733843577902219535609 %N A138288 a(n) = A054320(n) - A001078(n). %C A138288 Numbers k such that 6*k^2 - 2 is a square. - _Bruno Berselli_, Feb 10 2014 %D A138288 H. Brocard, Note #2049, L'Intermédiaire des Mathématiciens, 8 (1901), pp. 212-213. - _N. J. A. Sloane_, Mar 02 2022 %H A138288 Vincenzo Librandi, <a href="/A138288/b138288.txt">Table of n, a(n) for n = 0..1000</a> %H A138288 Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, <a href="https://arxiv.org/abs/2401.13524">Combinatorics on words and generating Dirichlet series of automatic sequences</a>, arXiv:2401.13524 [math.CO], 2024. %H A138288 Bruno Deschamps, <a href="http://dx.doi.org/10.1016/j.jnt.2010.06.006">Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer</a>, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670. %H A138288 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I). %H A138288 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II). %H A138288 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III). %H A138288 Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV). %H A138288 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -1). %F A138288 a(n) = A072256(n+1). %F A138288 a(n) = A001079(n) + 2*A001078(n). %F A138288 a(n) = 10*a(n-1) - a(n-2). a(-1) = a(0) = 1. %F A138288 (sqrt(2)+sqrt(3))^(2*n+1) = A054320(n-1)*sqrt(2) + a(n)*sqrt(3). %F A138288 From _Michael Somos_, Jan 25 2013: (Start) %F A138288 G.f.: (1 - x) / (1 - 10*x + x^2). %F A138288 a(-1-n) = a(n). (End) %F A138288 a(n) = sqrt(2+(5-2*sqrt(6))^(1+2*n)+(5+2*sqrt(6))^(1+2*n))/(2*sqrt(3)). - _Gerry Martens_, Jun 04 2015 %F A138288 E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/3. - _Stefano Spezia_, May 16 2023 %e A138288 1 + 9*x + 89*x^2 + 881*x^3 + 8721*x^4 + 86329*x^5 + ... %t A138288 CoefficientList[Series[(1 - x)/(1 - 10 x + x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 12 2014 *) %t A138288 a[c_, n_] := Module[{}, %t A138288 p := Length[ContinuedFraction[ Sqrt[ c]][[2]]]; %t A138288 d := Denominator[Convergents[Sqrt[c], n p]]; %t A138288 t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}]; %t A138288 Return[t]; %t A138288 ] (* Complement of A041007, A041039 *) %t A138288 a[6, 20] (* _Gerry Martens_, Jun 07 2015 *) %o A138288 (Sage) [lucas_number1(n,10,1)-lucas_number1(n-1,10,1) for n in range(1, 20)] # _Zerinvary Lajos_, Nov 10 2009 %o A138288 (PARI) {a(n) = subst( poltchebi(n+1) + poltchebi(n), x, 5) / 6} /* _Michael Somos_, Jan 25 2013 */ %Y A138288 Cf. A001078, A001079, A072256, A138281. %Y A138288 Cf. similar sequences listed in A238379. %Y A138288 Cf. A041007, A041039, A054320. %K A138288 nonn,easy %O A138288 0,2 %A A138288 _Reinhard Zumkeller_, Mar 12 2008