A138296 Table T(k,n) read along antidiagonals: sum of the k-th powers of the distinct prime factors of A024619(n).
5, 13, 7, 35, 29, 5, 97, 133, 13, 9, 275, 641, 35, 53, 8, 793, 3157, 97, 351, 34, 5, 2315, 15689, 275, 2417, 152, 13, 7, 6817, 78253, 793, 16839, 706, 35, 29, 10, 20195, 390881, 2315, 117713, 3368, 97, 133, 58, 13, 60073, 1953637, 6817, 823671, 16354, 275, 641
Offset: 1
Examples
Upper left corner of the table starting at row k=1, column n=1: 1|......5.......7.......5.......9.......8.......5.......7. 2|.....13......29......13......53......34......13......29. 3|.....35.....133......35.....351.....152......35.....133. 4|.....97.....641......97....2417.....706......97.....641. 5|....275....3157.....275...16839....3368.....275....3157. 6|....793...15689.....793..117713...16354.....793...15689. 7|...2315...78253....2315..823671...80312....2315...78253. 8|...6817..390881....6817.5765057..397186....6817..390881.
Links
- J.-M de Koninck, F. Luca, Integers divisible by sums of powers of their prime factors, J. Num. Theory vol 128 (2008) 557-563.
Programs
-
Maple
A024619 := proc(n) local a; if n = 1 then RETURN(6); else for a from A024619(n-1)+1 do if A001221(a) > 1 then RETURN(a) ; fi ; od: fi ; end: A138296 := proc(n,j) local f,beta ; beta := 0 ; for f in ifactors( A024619(n) )[2] do beta := beta+op(1,f)^j ; od: RETURN(beta) ; end: for d from 1 to 10 do for n from 1 to d do printf("%d,",A138296(n,d-n+1)) ; od: od: # R. J. Mathar, May 07 2008
Comments