A138313 Decimal expansion of constant 'kappa' = lim_{n -> infinity} (F_n - H_n), where H_n are harmonic numbers, F_n are squarefree totient analogs of H_n.
7, 5, 5, 3, 6, 6
Offset: 0
Examples
0.755366...
Links
- Dick Boland, An Analog of the Harmonic Numbers Over the Squarefree Integers, 2008.
Crossrefs
Programs
-
Mathematica
<< NumberTheory`NumberTheoryFunctions` prl = 100000; ts = 0; f = 1; While[f < 100000000000, If[SquareFreeQ[f], ts += N[1/EulerPhi[f], 15]; If[f > prl, Print[{f, ts, hn = N[HarmonicNumber[f], 15], N[ts - hn, 10]}]; prl += 100000]]; f += 1]
Formula
Limit_{n -> infinity} ((Sum_{k=1..n} mu^2(k)/phi(k)) - H_n), where mu(k) is the Möbius function, phi(k) is Euler's totient function and H_n is the n-th harmonic number.
Comments