cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138320 Numerators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n-H_n.

This page as a plain text file.
%I A138320 #12 Aug 31 2018 21:17:26
%S A138320 0,1,2,5,7,4,173,587,1481,1859,20701,18391,241393,275713,148367,
%T A138320 548423,2342059,241321,41436061,19263077,40604659,43779103,1009564739,
%U A138320 1907583043,9002492327,9603126977,27322095131,25887926681,752184042199
%N A138320 Numerators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n-H_n.
%C A138320 F_n-H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens' 3rd constant and gamma is Euler's constant.
%H A138320 G. C. Greubel, <a href="/A138320/b138320.txt">Table of n, a(n) for n = 1..1000</a>
%H A138320 Dick Boland, <a href="http://www.imathination.org/kappa/kappa.pdf">An Analog of the Harmonic Numbers Over the Squarefree Integers</a>
%F A138320 a(n) = Numerator[(Sum_{k=1..n} mu^2(k)/phi(k)) - H_n] where mu(k) is the Mobius function, phi(k) is Euler's Totient function and H_n is the n-th Harmonic Number.
%e A138320 Numerators of F_n - H_n, e.g. - F_1 - H_1 = (1/1-1/1), F_2 = ((1/1-1/1) + (1/1-1/2)),...
%e A138320 F_11 = ((1/1-1/1) +(1/1-1/2) +(1/2-1/3) +(0-1/4) +(1/4-1/5) +(1/2-1/6) +(1/6-1/7) +(0-1/8) +(0-1/9) +(1/4-1/10) +(1/10-1/11)).
%t A138320 Table[Numerator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]-HarmonicNumber[n]], {n, 1, 60}]
%o A138320 (PARI) for(n=1,60, print1(numerator(sum(k=1,n, moebius(k)^2/eulerphi(k)) - sum(j=1,n,1/j)), ", ")) \\ _G. C. Greubel_, Aug 31 2018
%Y A138320 Cf. A138312, A138313, A138312, A138316, A138317, A138321, A083343, A001620.
%K A138320 frac,nonn
%O A138320 1,3
%A A138320 Dick Boland (abstract(AT)imathination.org), Mar 14 2008, Mar 27 2008