cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138321 Denominators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n - H_n.

This page as a plain text file.
%I A138321 #14 May 03 2024 19:52:29
%S A138321 1,2,3,12,15,5,210,840,2520,2520,27720,27720,360360,360360,180180,
%T A138321 720720,3063060,340340,58198140,29099070,58198140,58198140,1338557220,
%U A138321 2677114440,13385572200,13385572200,40156716600,40156716600,1164544781400,582272390700,18050444111700,144403552893600
%N A138321 Denominators of the difference between the squarefree totient analogs of the harmonic numbers and the harmonic numbers: F_n - H_n.
%C A138321 F_n - H_n approaches a constant, 'kappa', conjectured to be equivalent to the difference of B_3-gamma, where B_3 is Mertens's 3rd constant and gamma is Euler's constant.
%C A138321 Original data was given as {1, 1, 12, 24, 240, 80, 560, 3360, 30240, 7560, 831600, 831600, 93600, 21621600, 6177600, 12355200, 2940537600, 980179200, 55870214400, 2234808576, 3724680960, 177365760, 49597067520, 29758240512, 3719780064000} which is in error for this sequence. - _G. C. Greubel_, Sep 14 2018
%H A138321 G. C. Greubel, <a href="/A138321/b138321.txt">Table of n, a(n) for n = 1..1000</a>
%H A138321 Dick Boland, <a href="http://www.imathination.org/kappa/kappa.pdf">An Analog of the Harmonic Numbers Over the Squarefree Integers</a>
%F A138321 a(n) = denominator( (Sum_{k=1..n} mu(k)^2/phi(k)) - H_n) where mu(k) is the Mobius function, phi(k) is Euler's Totient function and H_n is the n-th Harmonic Number.
%e A138321 Denominators of F_n - H_n, e.g., -F_1 - H_1 = (1/1 - 1/1), F_2 = ((1/1 - 1/1) + (1/1 - 1/2)), ...
%e A138321 F_11 = ((1/1 - 1/1) + (1/1 - 1/2) + (1/2 - 1/3) + (0 - 1/4) + (1/4 - 1/5) + (1/2 - 1/6) + (1/6 - 1/7) + (0 - 1/8) + (0 - 1/9) + (1/4 - 1/10) + (1/10 - 1/11)).
%t A138321 Table[Denominator[Sum[MoebiusMu[k]^2/EulerPhi[k], {k, 1, n}]-HarmonicNumber[n]], {n, 1, 60}]
%o A138321 (PARI) for(n=1, 60,print1(denominator(sum(k=1,n, moebius(k)^2/eulerphi(k) ) - sum(j=1, n, 1/j)), ", ")) \\ _G. C. Greubel_, Sep 14 2018
%Y A138321 Cf. A138312, A138313, A138312, A138316, A138317, A138320, A083343, A001620.
%K A138321 frac,nonn
%O A138321 1,2
%A A138321 Dick Boland (abstract(AT)imathination.org), Mar 14 2008, Mar 27 2008
%E A138321 Data replaced by _G. C. Greubel_, Sep 14 2018