cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138330 Beatty discrepancy (defined in A138253) giving the closeness of the pair (A136497,A136498) to the Beatty pair (A001951,A001952).

This page as a plain text file.
%I A138330 #34 Jan 08 2025 10:15:12
%S A138330 1,2,1,1,1,1,2,1,2,1,1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,
%T A138330 1,2,1,2,1,1,2,1,2,1,1,1,1,2,1,2,1,1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,
%U A138330 1,2,1,2,1,1,1,1,2,1,2,1,1,2,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,1,1,1,1
%N A138330 Beatty discrepancy (defined in A138253) giving the closeness of the pair (A136497,A136498) to the Beatty pair (A001951,A001952).
%C A138330 Old definition was "Beatty discrepancy of the complementary equation b(n) = a(a(n)) + a(n)".
%H A138330 Muniru A Asiru, <a href="/A138330/b138330.txt">Table of n, a(n) for n = 1..1000</a>
%H A138330 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html"> Complementary Equations</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
%F A138330 a(n) = d(n) - c(c(n)) - c(n), where c(n) = A001951 and d(n) = A001952.
%F A138330 a(n) = 2*n - A007069(n). - _Benoit Cloitre_, May 08 2008
%F A138330 a(n) = A059648(n+1) + 1. - _Michel Dekking_, Nov 11 2018
%e A138330 d(1) - c(c(1)) - c(1) =  3 - 1 - 1 = 1;
%e A138330 d(2) - c(c(2)) - c(2) =  6 - 2 - 2 = 2;
%e A138330 d(3) - c(c(3)) - c(3) = 10 - 5 - 4 = 1;
%e A138330 d(4) - c(c(4)) - c(4) = 13 - 7 - 5 = 1.
%p A138330 a:=n->2*n-floor(sqrt(2)*floor(sqrt(2)*n)): seq(a(n),n=1..120); # _Muniru A Asiru_, Nov 11 2018
%t A138330 Table[2 n - Floor[Sqrt[2] Floor[Sqrt[2] n]], {n, 1, 100}] (* _Vincenzo Librandi_, Nov 12 2018 *)
%o A138330 (PARI) a(n)=2*n-floor(sqrt(2)*floor(sqrt(2)*n)) \\ _Benoit Cloitre_, May 08 2008
%o A138330 (Magma) [2*n - Floor(Sqrt(2)*Floor(Sqrt(2)*n)): n in [1..100]]; // _Vincenzo Librandi_, Nov 12 2018
%o A138330 (Python)
%o A138330 from math import isqrt
%o A138330 def A138330(n): return (m:=n<<1)-isqrt(isqrt(n*m)**2<<1) # _Chai Wah Wu_, Aug 29 2022
%Y A138330 Cf. A001951, A001952, A136497, A136498, A138253, A059648.
%K A138330 nonn
%O A138330 1,2
%A A138330 _Clark Kimberling_, Mar 14 2008
%E A138330 Definition revised by _N. J. A. Sloane_, Dec 16 2018