cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138348 Lesser of twin primes such that both twin primes have no bases b, 1 < b < p-1, in which p is a palindrome.

This page as a plain text file.
%I A138348 #10 Jun 03 2021 16:07:13
%S A138348 137,4337,8291,9419,10937,13757,19427,20981,36011,38327,43397,59441,
%T A138348 71327,74717,76871,90437,91571,117239,120941,121019,167021,181787,
%U A138348 191561,196871,197597,221717,228881,239387,240881,271277,279119,289031
%N A138348 Lesser of twin primes such that both twin primes have no bases b, 1 < b < p-1, in which p is a palindrome.
%C A138348 Also primes in A016038 which are 2 less than their immediate successors.
%C A138348 Prime index of A138348: {33, 592, 1040, 1165, 1328, 1627, 2201, 2359, 3826, 4046, 4524, 6009, 7060, 7367, 7557, 8756, 8852, ...
%H A138348 Robert G. Wilson v, <a href="/A138348/b138348.txt">Table of n, a(n) for n = 1..95</a>
%t A138348 palindromicBases[n_] := Module[{p}, Table[p = IntegerDigits[n, b]; If[p == Reverse[p], {b, p}, Sequence @@ {}], {b, 2, n - 2}]]; lst = {}; Do[ If[ Length@ palindromicBases@ Prime@ n == 0, AppendTo[lst, Prime@n]], {n, 22189}]; lst[[ # ]] & /@ Select[ Range@ Length@ lst - 1, lst[[ # ]] + 2 == lst[[ # + 1]] &]
%t A138348 f[n_] := Block[{k = 2}, While[id = IntegerDigits[n, k]; id != Reverse@ id, k++ ]; k]; lst = {2}; Do[p = Prime@ n; If[ f@p == p - 1, AppendTo[lst, p]; Print@p], {n, 128149}]; lst[[ # ]] & /@ Select[Range@11284, lst[[ # ]] + 2 == lst[[ # + 1]] &]
%t A138348 nbQ[n_]:=NoneTrue[Table[IntegerDigits[n,b],{b,2,n-2}],#==Reverse[#]&] && NoneTrue[ Table[IntegerDigits[n+2,b],{b,2,n}],#==Reverse[#]&]; Select[ Select[Partition[Prime[Range[26000]],2,1],#[[2]]-#[[1]]==2&][[All,1]],nbQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 03 2021 *)
%Y A138348 Cf. A001359, A016038.
%K A138348 nonn,base
%O A138348 1,1
%A A138348 _Robert G. Wilson v_, Mar 09 2008