cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138351 Central moment sequence of tr(A^2) in USp(4).

Original entry on oeis.org

1, 0, 2, 1, 11, 16, 95, 232, 1085, 3460, 14820, 54275, 227095, 895688, 3756688, 15462293, 65586405, 277342336, 1192038266, 5136760581, 22357937431, 97730561480, 430177280197, 1901975209706, 8454151507801, 37734802709796
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008, Mar 31 2008

Keywords

Comments

If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2)+1)^n] is the n-th central moment of the trace of A^2, since E[tr(A^2)] = -1 (see A138350).

Examples

			a(4) = 11 because E[(tr(A^2)+1)^4] = 11 for a random matrix A in USp(4).
a(4) = 1*A138350(0)+4*A138350(1)+6*A138350(2)+4*A138350(3)+1*A138350(4) = 1*1 + 4*(-1) + 6*3 + 4*(-6) + 1*20 = 11.
		

Crossrefs

Cf. A138350.

Programs

  • Mathematica
    a126120[n_] := If[EvenQ[n], CatalanNumber[n/2], 0];
    a138364[n_] := If[EvenQ[n], 0, Binomial[n, Floor[n/2]], 0];
    a138350[n_] := a126120[n] a138364[n+1] - a138364[n] a126120[n+1];
    a[n_] := Sum[Binomial[n, i] a138350[i], {i, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 13 2018 *)

Formula

a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y)+1)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} binomial(n,i)*A138350(i).