A138354 Central moment sequence of tr(A^4) in USp(4).
1, 0, 3, 1, 21, 26, 215, 498, 2821, 9040, 43695, 165375, 752785, 3101970, 13881803, 59837183, 267860685, 1184749704, 5337504263, 23996776941, 108964583121, 495544446410, 2267450194443, 10402298479276, 47926692348121
Offset: 0
Keywords
Examples
a(3) = 1 because E[(tr(A^4)+1)^3] = 1. a(3) = 1*A018224(0) + 3*A018224(1) + 3*A018224(2) + 1*A018224(1) = 1*1 + 3*(-1) + 3*4 + 1*(-9) = 1.
Links
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Crossrefs
Cf. A018224.
Programs
-
Mathematica
a18224[n_] := Binomial[n, Floor[n/2]]^2; a[n_] := Sum[(-1)^i Binomial[n, i] a18224[i], {i, 0, n}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 13 2018 *)
Formula
a(n) = (1/2)*Integral_{x=0..Pi,y=0..Pi}(2cos(4x)+2cos(4y)+1)^n*(2cos(x)-2cos(y))^2*(2/Pi*sin^2(x))*(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} (-1)^i binomial(n,i)*A018224(i). [corrected by Jean-François Alcover, Aug 13 2018]
Comments