This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138360 #18 Apr 11 2022 22:08:35 %S A138360 3253177,3253219,3253223,3253231,3253241,20189111,20189119,20189123, %T A138360 20189137,20189167,22122937,22122979,22122983,22123021,22123043, %U A138360 61309069,61309081,61309091,61309093,61309097,89073521,89073533,89073583,89073599,89073613 %N A138360 Quintuples of 5 consecutive strictly non-palindromic primes. %C A138360 The quintuples T(n,1), T(n,2), .. T(n,5), n>=1, in this array are 5 consecutive primes (consecutive in A000040) which are also members of A016038. %C A138360 Notice that all strictly non-palindromic numbers >6 are prime! (See A016038.) Quintuples of these strictly non-palindromic primes, without any normal prime in between, are listed here. %C A138360 Up to 1 billion there are only 5 quintuples of strictly non-palindromic primes. May be that there are no more quintuples of this kind. Up to 1 billion there are no n-tuples of strictly non-palindromic primes with n>5. %D A138360 Karl Hovekamp, Palindromzahlen in adischen Zahlensystemen, 2004 %H A138360 K. Hovekamp, <a href="http://hovekamp.info/palindrom/">Palindromic numbers in different bases</a>. %H A138360 K. Hovekamp, <a href="http://hovekamp.info/palindrom/bilder/prime/tupelx.txt">Strictly non-palindromic prime 5-tuple, quadruple and triple up to 1 billion</a> %H A138360 Wikipedia, <a href="http://en.wikipedia.org/wiki/Strictly_non-palindromic_numbers">Strictly non-palindromic numbers</a>. %e A138360 Primes: %e A138360 ... %e A138360 3253153 palindromic in bases 203, 356, 495, 1316, 1442, 1504 and 1648 %e A138360 3253177 strictly non-palindromic %e A138360 3253219 strictly non-palindromic %e A138360 3253223 strictly non-palindromic %e A138360 3253231 strictly non-palindromic %e A138360 3253241 strictly non-palindromic %e A138360 3253253 palindromic in bases 653, 768, 910 and 1001 %e A138360 ... %e A138360 So {3253177, 3253219, 3253223, 3253231, 3253241} is the first quintuple of the strictly non-palindromic primes. %Y A138360 Cf. A138358 (triples), A138359 (4-tuples), A138329, A016038, A047811, A016038. %K A138360 base,hard,nonn,tabf %O A138360 1,1 %A A138360 _Karl Hovekamp_, Mar 16 2008 %E A138360 More terms from _Mauro Fiorentini_, Jan 03 2016