This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138413 #16 Apr 26 2023 18:29:50 %S A138413 0,0,2,18,186,2120,25724,325878,4260282,57048048,778483932, %T A138413 10786724388,151355847012,2146336125648,30711521221376, %U A138413 442862000693438,6429286894263738,93891870710425440,1378379704593824300,20330047491994213884,301111732041234778316,4476705468260134734384,66784808491631598524136 %N A138413 A bisection of A000957. %F A138413 Conjecture: D-finite with recurrence 4*n*(2*n-1)*(7*n-13)*a(n) +(-910*n^3+3489*n^2-4277*n+1680)*a(n-1) +2*(4*n-7)*(7*n-6)*(4*n-5)*a(n-2)=0. Telescoping would provide another recurrence for A000957. - _R. J. Mathar_, Jun 26 2020 %p A138413 b:= proc(n) option remember; `if`(n<3, n*(2-n), %p A138413 ((7*n-12)*b(n-1)+(4*n-6)*b(n-2))/(2*n)) %p A138413 end: %p A138413 a:= n-> b(2*n): %p A138413 seq(a(n), n=0..25); # _Alois P. Heinz_, Apr 26 2023 %o A138413 (Python) %o A138413 from itertools import count, islice %o A138413 def A138413_gen(): # generator of terms %o A138413 yield from (0,0) %o A138413 a, c = 0, 1 %o A138413 for n in count(1,2): %o A138413 a = (c:=c*((n<<2)+2)//(n+2))-a>>1 %o A138413 yield (a:=(c:=c*((n+1<<2)+2)//(n+3))-a>>1) %o A138413 A138413_list = list(islice(A138413_gen(),20)) # _Chai Wah Wu_, Apr 26 2023 %Y A138413 Cf. A000957, A138414. %K A138413 nonn,easy %O A138413 0,3 %A A138413 _N. J. A. Sloane_, May 08 2008