cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138416 a(n) = (p^3 - p^2)/2, where p = prime(n).

This page as a plain text file.
%I A138416 #21 Dec 12 2024 23:33:31
%S A138416 2,9,50,147,605,1014,2312,3249,5819,11774,14415,24642,33620,38829,
%T A138416 50807,73034,100949,111630,148137,176435,191844,243399,282449,348524,
%U A138416 451632,510050,541059,606797,641574,715064,1016127,1115465,1276292,1333149
%N A138416 a(n) = (p^3 - p^2)/2, where p = prime(n).
%C A138416 Differences (p^k - p^m)/q with k > m:
%C A138416     expression     OEIS sequence
%C A138416   --------------   -------------
%C A138416    p^2 - p            A036689
%C A138416   (p^2 - p)/2         A008837
%C A138416    p^3 - p            A127917
%C A138416   (p^3 - p)/2         A127918
%C A138416   (p^3 - p)/3         A127919
%C A138416   (p^3 - p)/6         A127920
%C A138416    p^3 - p^2          A135177
%C A138416   (p^3 - p^2)/2    this sequence
%C A138416    p^4 - p            A138401
%C A138416   (p^4 - p)/2         A138417
%C A138416    p^4 - p^2          A138402
%C A138416   (p^4 - p^2)/2       A138418
%C A138416   (p^4 - p^2)/3       A138419
%C A138416   (p^4 - p^2)/4       A138420
%C A138416   (p^4 - p^2)/6       A138421
%C A138416   (p^4 - p^2)/12      A138422
%C A138416    p^4 - p^3          A138403
%C A138416   (p^4 - p^3)/2       A138423
%C A138416    p^5 - p            A138404
%C A138416   (p^5 - p)/2         A138424
%C A138416   (p^5 - p)/3         A138425
%C A138416   (p^5 - p)/5         A138426
%C A138416   (p^5 - p)/6         A138427
%C A138416   (p^5 - p)/10        A138428
%C A138416   (p^5 - p)/15        A138429
%C A138416   (p^5 - p)/30        A138430
%C A138416    p^5 - p^2          A138405
%C A138416   (p^5 - p^2)/2       A138431
%C A138416    p^5 - p^3          A138406
%C A138416   (p^5 - p^3)/2       A138432
%C A138416   (p^5 - p^3)/3       A138433
%C A138416   (p^5 - p^3)/4       A138434
%C A138416   (p^5 - p^3)/6       A138435
%C A138416   (p^5 - p^3)/8       A138436
%C A138416   (p^5 - p^3)/12      A138437
%C A138416   (p^5 - p^3)/24      A138438
%C A138416    p^5 - p^4          A138407
%C A138416   (p^5 - p^4)/2       A138439
%C A138416    p^6 - p            A138408
%C A138416   (p^6 - p)/2         A138440
%C A138416    p^6 - p^2          A138409
%C A138416   (p^6 - p^2)/2       A138441
%C A138416   (p^6 - p^2)/3       A138442
%C A138416   (p^6 - p^2)/4       A138443
%C A138416   (p^6 - p^2)/5       A138444
%C A138416   (p^6 - p^2)/6       A138445
%C A138416   (p^6 - p^2)/10      A138446
%C A138416   (p^6 - p^2)/12      A138447
%C A138416   (p^6 - p^2)/15      A138448
%C A138416   (p^6 - p^2)/20      A122220
%C A138416   (p^6 - p^2)/30      A138450
%C A138416   (p^6 - p^2)/60      A138451
%C A138416    p^6 - p^3          A138410
%C A138416   (p^6 - p^3)/2       A138452
%C A138416    p^6 - p^4          A138411
%C A138416   (p^6 - p^4)/2       A138453
%C A138416   (p^6 - p^4)/3       A138454
%C A138416   (p^6 - p^4)/4       A138455
%C A138416   (p^6 - p^4)/6       A138456
%C A138416   (p^6 - p^4)/8       A138457
%C A138416   (p^6 - p^4)/12      A138458
%C A138416   (p^6 - p^4)/24      A138459
%C A138416    p^6 - p^5          A138412
%C A138416   (p^6 - p^5)/2       A138460
%C A138416 .
%C A138416 We can prove that for n>1, a(n) is the remainder of the Euclidean division of Sum_{k=0..p-1} k^p by p^3 where p = prime(n). - _Pierre Vandaƫle_, Nov 30 2024
%H A138416 Vincenzo Librandi, <a href="/A138416/b138416.txt">Table of n, a(n) for n = 1..168</a>
%t A138416 a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
%t A138416 (#^3-#^2)/2&/@Prime[Range[50]] (* _Harvey P. Dale_, Nov 01 2020 *)
%o A138416 (PARI) forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ _Charles R Greathouse IV_, Jun 16 2011
%o A138416 (Magma)[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // _Vincenzo Librandi_, Jun 17 2011
%K A138416 nonn,easy
%O A138416 1,1
%A A138416 _Artur Jasinski_, Mar 19 2008
%E A138416 Definition corrected by _T. D. Noe_, Aug 25 2008