This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138459 #7 Dec 29 2023 10:39:58 %S A138459 4,54,1250,9604,146410,399854,2004504,3909630,12313004,49509670, %T A138459 73881680,213654354,395606540,526495354,897861304,1846372554, %U A138459 3514034690,4292210710,7536519254,10672906020,12608819004,20254042120,27241076254 %N A138459 a(n) = ((n-th prime)^6-(n-th prime)^4)/12. %C A138459 Differences (p^k-p^m)/q such that k > m: %C A138459 p^2-p is given in A036689 %C A138459 (p^2-p)/2 is given in A008837 %C A138459 p^3-p is given in A127917 %C A138459 (p^3-p)/2 is given in A127918 %C A138459 (p^3-p)/3 is given in A127919 %C A138459 (p^3-p)/6 is given in A127920 %C A138459 p^3-p^2 is given in A135177 %C A138459 (p^3-p^2)/2 is given in A138416 %C A138459 p^4-p is given in A138401 %C A138459 (p^4-p)/2 is given in A138417 %C A138459 p^4-p^2 is given in A138402 %C A138459 (p^4-p^2)/2 is given in A138418 %C A138459 (p^4-p^2)/3 is given in A138419 %C A138459 (p^4-p^2)/4 is given in A138420 %C A138459 (p^4-p^2)/6 is given in A138421 %C A138459 (p^4-p^2)/12 is given in A138422 %C A138459 p^4-p^3 is given in A138403 %C A138459 (p^4-p^3)/2 is given in A138423 %C A138459 p^5-p is given in A138404 %C A138459 (p^5-p)/2 is given in A138424 %C A138459 (p^5-p)/3 is given in A138425 %C A138459 (p^5-p)/5 is given in A138426 %C A138459 (p^5-p)/6 is given in A138427 %C A138459 (p^5-p)/10 is given in A138428 %C A138459 (p^5-p)/15 is given in A138429 %C A138459 (p^5-p)/30 is given in A138430 %C A138459 p^5-p^2 is given in A138405 %C A138459 (p^5-p^2)/2 is given in A138431 %C A138459 p^5-p^3 is given in A138406 %C A138459 (p^5-p^3)/2 is given in A138432 %C A138459 (p^5-p^3)/3 is given in A138433 %C A138459 (p^5-p^3)/4 is given in A138434 %C A138459 (p^5-p^3)/6 is given in A138435 %C A138459 (p^5-p^3)/8 is given in A138436 %C A138459 (p^5-p^3)/12 is given in A138437 %C A138459 (p^5-p^3)/24 is given in A138438 %C A138459 p^5-p^4 is given in A138407 %C A138459 (p^5-p^4)/2 is given in A138439 %C A138459 p^6-p is given in A138408 %C A138459 (p^6-p)/2 is given in A138440 %C A138459 p^6-p^2 is given in A138409 %C A138459 (p^6-p^2)/2 is given in A138441 %C A138459 (p^6-p^2)/3 is given in A138442 %C A138459 (p^6-p^2)/4 is given in A138443 %C A138459 (p^6-p^2)/5 is given in A138444 %C A138459 (p^6-p^2)/6 is given in A138445 %C A138459 (p^6-p^2)/10 is given in A138446 %C A138459 (p^6-p^2)/12 is given in A138447 %C A138459 (p^6-p^2)/15 is given in A138448 %C A138459 (p^6-p^2)/20 is given in A122220 %C A138459 (p^6-p^2)/30 is given in A138450 %C A138459 (p^6-p^2)/60 is given in A138451 %C A138459 p^6-p^3 is given in A138410 %C A138459 (p^6-p^3)/2 is given in A138452 %C A138459 p^6-p^4 is given in A138411 %C A138459 (p^6-p^4)/2 is given in A138453 %C A138459 (p^6-p^4)/3 is given in A138454 %C A138459 (p^6-p^4)/4 is given in A138455 %C A138459 (p^6-p^4)/6 is given in A138456 %C A138459 (p^6-p^4)/8 is given in A138457 %C A138459 (p^6-p^4)/12 is given in A138458 %C A138459 (p^6-p^4)/24 is given in A138459 %C A138459 p^6-p^5 is given in A138412 %C A138459 (p^6-p^5)/2 is given in A138460 %t A138459 a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a %o A138459 (PARI) forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ _Charles R Greathouse IV_, Jul 15 2011 %K A138459 nonn,easy %O A138459 1,1 %A A138459 _Artur Jasinski_, Mar 22 2008