This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138505 #12 Feb 16 2025 08:33:08 %S A138505 1,-1,-8,-1,26,8,-48,-1,73,-26,-120,8,170,48,-208,-1,290,-73,-360,-26, %T A138505 384,120,-528,8,651,-170,-656,48,842,208,-960,-1,960,-290,-1248,-73, %U A138505 1370,360,-1360,-26,1682,-384,-1848,120,1898,528,-2208,8,2353,-651,-2320 %N A138505 Expansion of ((phi(q) * phi(-q^2)^2)^2 - 1) / 4 in powers of q where phi() is a Ramanujan theta function. %C A138505 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A138505 G. C. Greubel, <a href="/A138505/b138505.txt">Table of n, a(n) for n = 1..10000</a> %H A138505 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A138505 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A138505 a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = ((p^2)^(e+1) - 1) / (p^2 - 1) if p == 1 (mod 4), a(p^e) = ((-p^2)^(e+1) - 1) / ( -p^2 - 1) if p == 3 (mod 4). %F A138505 G.f.: Sum_{k>0} -(-1)^k * (2*k-1)^2 * x^(2*k-1) / (1 + x^(2*k-1)). %F A138505 a(2*n) = (-1)^n * a(n). %F A138505 4 * a(n) = A138504(n) unless n=0. %F A138505 a(n) = -(-1)^n * A002173(n). - _Michael Somos_, Sep 25 2015 %e A138505 G.f. = q - q^2 - 8*q^3 - q^4 + 26*q^5 + 8*q^6 - 48*q^7 - q^8 + 73*q^9 + ... %t A138505 a[ n_] := If[ n < 1, 0, - DivisorSum[ n, #^2 KroneckerSymbol[ -4, #] (-1)^(n/#) &]]; (* _Michael Somos_, Sep 25 2015 *) %o A138505 (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * kronecker(-4, d) * -(-1)^(n/d)))}; %o A138505 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A)^9 / (eta(x + A)^2 * eta(x^4 + A)^4))^2 - 1) / 4, n))}; %Y A138505 Cf. A002173, A138504. %K A138505 sign,mult %O A138505 1,3 %A A138505 _Michael Somos_, Mar 21 2008