This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A138541 #14 Jul 25 2019 03:11:16 %S A138541 1,-1,3,-7,24,-75,285,-1036,4242,-16926,73206,-311256,1403028, %T A138541 -6247527,29082339,-134138290,640672890,-3038045010,14818136190, %U A138541 -71858704710,356665411440,-1761879027090,8874875097270,-44526516209280,227135946200940,-1154738374364100,5955171596514900 %N A138541 Moment sequence of tr(A^2) in USp(6). %C A138541 If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2))^n] is the n-th moment of the trace of A^2. See A138542 for central moments. %H A138541 Kiran S. Kedlaya and Andrew V. Sutherland, <a href="http://arXiv.org/abs/0803.4462">Hyperelliptic curves, L-polynomials and random matrices</a>, arXiv:0803.4462 [math.NT], 2008-2010. %F A138541 mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=g, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/2}(z)-B_{(2j-m+2)/2}(z)) and B_v(z)=0 for non-integer k and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v. %e A138541 a(4) = 24 because E[(tr(A^2))^4] = 24 for a random matrix A in USp(6). %Y A138541 Cf. A138540, A138542. %K A138541 sign %O A138541 0,3 %A A138541 _Andrew V. Sutherland_, Mar 24 2008