A138543 Moment sequence of tr(A^3) in USp(6).
1, 0, 3, 0, 26, 0, 345, 0, 5754, 0, 110586, 0, 2341548, 0, 53208441, 0, 1276027610, 0, 31930139670, 0, 826963069140, 0, 22035414489270, 0, 601361536493340, 0, 16749316314679500, 0, 474777481850283240, 0, 13665774112508864385, 0
Offset: 0
Keywords
Examples
a(4) = 26 because E[(tr(A^2))^4] = 26 for a random matrix A in USp(6).
Links
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Crossrefs
Cf. A138540.
Formula
mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/3}(z)-B_{(2j-m+2)/3}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.
Comments