cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136045 Bisection of A138546.

Original entry on oeis.org

1, 4, 42, 660, 12810, 281736, 6727644, 170316432, 4504487130, 123255492360, 3465702008340, 99645553785960, 2918768920720380, 86852063374902000, 2619552500788984200, 79939673971478231760
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Programs

  • Maple
    sq := (1-40*x+144*x^2)^(1/2); pb := 54*x*(108*x^2-27*x+1+(9*x-1)*sq);
    H1 := hypergeom([7/6,1/3],[1],pb); H2 := hypergeom([1/6,4/3],[1],pb);
    fa := (10-72*x-6*sq)^(1/2)/(216*x);
    ogf := fa*((648*x^2+90*x+1+(54*x+3)*sq)*H1^2 - (612*x-7+3*sq)*H1*H2 + 8*(72*x-1)*H2^2); series(ogf,x=0,20); # Mark van Hoeij, Nov 12 2011

Formula

G.f.: ((41472*x^3 - 11520*x^2 + 288*x)*g'' + (-23040*x + 432 + 103680*x^2)*g' + (20736*x-864)*g)/1728 where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) = hypergeom([1/2,-n,-n],[1,2],4)*binomial(2*n,n). - Mark van Hoeij, May 13 2013
D-finite with recurrence n*(n+1)^2*a(n) +4*(-13*n^3+10*n^2+2*n-3)*a(n-1) +12*(2*n-3)*(26*n^2-61*n+39)*a(n-2) -432*(2*n-5)*(n-2)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 27 2022

A138548 Central moment sequence of tr(A^6) in USp(6).

Original entry on oeis.org

1, 0, 5, 1, 63, 46, 1135, 1800, 25431, 66232, 666387, 2397605, 19650565, 87187842, 633498229, 3214996309, 21829972815, 120665223560, 790528831099, 4613644505799, 29715748525937, 179604102525370, 1149406514424945
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6x6 complex matrices that are unitary and symplectic), then a(n)=E[(tr(A^6)+1)^n] is the n-th central moment of the trace of A^6, since E[tr(A^6)] = -1 (see A138546).

Examples

			a(5) = 46 because E[(tr(A^6)+1)^5] = 46 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z)=e^zF(z) where F(z) is the mgf of A138546.
Showing 1-2 of 2 results.